A variety of hemodynamic wall parameters (HWP) has been proposed over the years to quantify hemodynamic disturbances as potential predictors or indicators of vascular wall dysfunction. The aim of this study was to determine whether some of these might, for practical purposes, be considered redundant. Image-based computational fluid dynamics simulations were carried out for N=50 normal carotid bifurcations reconstructed from magnetic resonance imaging. Pairwise Spearman correlation analysis was performed for HWP quantifying wall shear stress magnitudes, spatial and temporal gradients, and harmonic contents. These were based on the spatial distributions of each HWP and, separately, the amount of the surface exposed to each HWP beyond an objectively-defined threshold. Strong and significant correlations were found among the related trio of time-averaged wall shear stress magnitude (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT). Wall shear stress spatial gradient (WSSG) was strongly and positively correlated with TAWSS. Correlations with Himburg and Friedman’s dominant harmonic (DH) parameter were found to depend on how the wall shear stress magnitude was defined in the presence of flow reversals. Many of the proposed HWP were found to provide essentially the same information about disturbed flow at the normal carotid bifurcation. RRT is recommended as a robust single metric of low and oscillating shear. On the other hand, gradient-based HWP may be of limited utility in light of possible redundancies with other HWP, and practical challenges in their measurement. Further investigations are encouraged before these findings should be extrapolated to other vascular territories.

1.
Chien
,
S.
, 2008, “
Effects of Disturbed Flow on Endothelial Cells
,”
Ann. Biomed. Eng.
0090-6964,
36
(
4
), pp.
554
562
.
2.
Himburg
,
H. A.
, and
Friedman
,
M. H.
, 2006, “
Correspondence of Low Mean Shear and High Harmonic Content in the Porcine Iliac Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
6
), pp.
852
856
.
3.
Caro
,
C. G.
,
Fitz-Gerald
,
J. M.
, and
Schroter
,
R. C.
, 1971, “
Atheroma and Arterial Wall Shear. Observation, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis
,”
Proc. R. Soc. London, Ser. B
0962-8452,
177
(
1046
), pp.
109
159
.
4.
Fry
,
D. L.
, 1968, “
Acute Vascular Endothelial Changes Associated With Increased Blood Velocity Gradients
,”
Circ. Res.
0009-7330,
22
(
2
), pp.
165
197
.
5.
Friedman
,
M. H.
, and
Ehrlich
,
L. W.
, 1975, “
Effect of Spatial Variations in Shear on Diffusion at the Wall of an Arterial Branch
,”
Circ. Res.
0009-7330,
37
(
4
), pp.
446
454
.
6.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arteriosclerosis (Dallas)
0276-5047,
5
(
3
), pp.
293
302
.
7.
Ojha
,
M.
, 1994, “
Wall Shear Stress Temporal Gradient and Anastomotic Intimal Hyperplasia
,”
Circ. Res.
0009-7330,
74
(
6
), pp.
1227
1231
.
8.
Hyun
,
S.
,
Kleinstreuer
,
C.
, and
Archie
,
J. P.
, Jr.
, 2000, “
Hemodynamics Analyses of Arterial Expansions With Implications to Thrombosis and Restenosis
,”
Med. Eng. Phys.
1350-4533,
22
(
1
), pp.
13
27
.
9.
Gelfand
,
B. D.
,
Epstein
,
F. H.
, and
Blackman
,
B. R.
, 2006, “
Spatial and Spectral 1heterogeneity of Time-Varying Shear Stress Profiles in the Carotid Bifurcation by Phase-Contrast MRI
,”
J. Magn. Reson Imaging
1053-1807,
24
(
6
), pp.
1386
1392
.
10.
Lee
,
S. W.
,
Antiga
,
L.
,
Spence
,
J. D.
, and
Steinman
,
D. A.
, 2008, “
Geometry of the Carotid Bifurcation Predicts Its Exposure to Disturbed Flow
,”
Stroke
0039-2499,
39
(
8
), pp.
2341
2347
.
11.
Friedman
,
M. H.
, and
Deters
,
O. J.
, 1987, “
Correlation Among Shear Rate Measures in Vascular Flows
,”
ASME J. Biomech. Eng.
0148-0731,
109
(
1
), pp.
25
26
.
12.
Thomas
,
J. B.
,
Antiga
,
L.
,
Che
,
S. L.
,
Milner
,
J. S.
,
Hangan-Steinman
,
D. A.
,
Spence
,
J. D.
,
Rutt
,
B. K.
, and
Steinman
,
D. A.
, 2005, “
Variation in the Carotid Bifurcation Geometry of Young Versus Older Adults: Implications for Geometric Risk of Atherosclerosis
,”
Stroke
0039-2499,
36
(
11
), pp.
2450
2456
.
13.
Ethier
,
C. R.
,
Steinman
,
D. A.
, and
Ojha
,
M.
, 1999, “
Comparisons Between Computational Hemodynamics, Photochromic Dye Flow Visualization and Magnetic Resonance Velocimetry
,”
The Haemodynamics of Arterial Organs—Comparison of Computational Predictions With In Vivo and In Vitro Data
,
X. Y.
Xu
, and
M. W.
Collins
, eds.,
WIT
,
Southampton, UK
, pp.
131
183
.
14.
Minev
,
P. D.
, and
Ethier
,
C. R.
, 1999, “
A Characteristic/Finite Element Algorithm for the 3D Navier–Stokes Equations Using Unstructured Grids
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
178
, pp.
39
50
.
15.
Ethier
,
C. R.
,
Prakash
,
S.
,
Steinman
,
D. A.
,
Leask
,
R. L.
,
Couch
,
G. G.
, and
Ojha
,
M.
, 2000, “
Steady Flow Separation Patterns in a 45 Degree Junction
,”
J. Fluid Mech.
0022-1120,
411
, pp.
1
38
.
16.
Moyle
,
K. R.
,
Antiga
,
L.
, and
Steinman
,
D. A.
, 2006, “
Inlet Conditions for Image-Based CFD Models of the Carotid Bifurcation: Is It Reasonable to Assume Fully Developed Flow?
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
3
), pp.
371
379
.
17.
He
,
X.
, and
Ku
,
D. N.
, 1996, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
1
), pp.
74
82
.
18.
Himburg
,
H. A.
,
Grzybowski
,
D. M.
,
Hazel
,
A. L.
,
LaMack
,
J. A.
,
Li
,
X. M.
, and
Friedman
,
M. H.
, 2004, “
Spatial Comparison Between Wall Shear Stress Measures and Porcine Arterial Endothelial Permeability
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
286
(
5
), pp.
H1916
1922
.
19.
Lei
,
M.
,
Kleinstreuer
,
C.
, and
Truskey
,
G. A.
, 1996, “
A Focal Stress Gradient-Dependent Mass Transfer Mechanism for Atherogenesis in Branching Arteries
,”
Med. Eng. Phys.
1350-4533,
18
(
4
), pp.
326
332
.
20.
Longest
,
P. W.
, and
Kleinstreuer
,
C.
, 2000, “
Computational Haemodynamics Analysis and Comparison Study of Arterio-Venous Grafts
,”
J. Med. Eng. Technol.
0309-1902,
24
(
3
), pp.
102
110
.
21.
Himburg
,
H. A.
,
Dowd
,
S. E.
, and
Friedman
,
M. H.
, 2007, “
Frequency-Dependent Response of the Vascular Endothelium to Pulsatile Shear Stress
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
293
(
1
), pp.
H645
H653
.
22.
Antiga
,
L.
, and
Steinman
,
D. A.
, 2004, “
Robust and Objective Decomposition and Mapping of Bifurcating Vessels
,”
IEEE Trans. Med. Imaging
0278-0062,
23
(
6
), pp.
704
713
.
23.
Goubergrits
,
L.
,
Kertzscher
,
U.
,
Schoneberg
,
B.
,
Wellnhofer
,
E.
,
Petz
,
C.
, and
Hege
,
H. C.
, 2008, “
CFD Analysis in an Anatomically Realistic Coronary Artery Model Based on Non-Invasive 3D Imaging: Comparison of Magnetic Resonance Imaging With Computed Tomography
,”
Int. J. Card. Imaging
0167-9899,
24
(
4
), pp.
411
421
.
24.
Glor
,
F. P.
,
Long
,
Q.
,
Hughes
,
A. D.
,
Augst
,
A. D.
,
Ariff
,
B.
,
Thom
,
S. A.
,
Verdonck
,
P. R.
, and
Xu
,
X. Y.
, 2003, “
Reproducibility Study of Magnetic Resonance Image-Based Computational Fluid Dynamics Prediction of Carotid Bifurcation Flow
,”
Ann. Biomed. Eng.
0090-6964,
31
(
2
), pp.
142
151
.
25.
Thomas
,
J. B.
,
Milner
,
J. S.
,
Rutt
,
B. K.
, and
Steinman
,
D. A.
, 2003, “
Reproducibility of Image-Based Computational Fluid Dynamics Models of the Human Carotid Bifurcation
,”
Ann. Biomed. Eng.
0090-6964,
31
(
2
), pp.
132
141
.
26.
Ford
,
M. D.
,
Alperin
,
N.
,
Lee
,
S. H.
,
Holdsworth
,
D. W.
, and
Steinman
,
D. A.
, 2005, “
Characterization of Volumetric Flow Rate Waveforms in the Normal Internal Carotid and Vertebral Arteries
,”
Physiol. Meas
0967-3334,
26
(
4
), pp.
477
488
.
27.
Holdsworth
,
D. W.
,
Norley
,
C. J.
,
Frayne
,
R.
,
Steinman
,
D. A.
, and
Rutt
,
B. K.
, 1999, “
Characterization of Common Carotid Artery Blood-Flow Waveforms in Normal Human Subjects
,”
Physiol. Meas
0967-3334,
20
(
3
), pp.
219
240
.
28.
Friedman
,
M. H.
, 2008, personal communication.
29.
Lee
,
S. W.
, and
Steinman
,
D. A.
, 2007, “
On the Relative Importance of Rheology for Image-Based CFD Models of the Carotid Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
2
), pp.
273
278
.
30.
Younis
,
H. F.
,
Kaazempur-Mofrad
,
M. R.
,
Chan
,
R. C.
,
Isasi
,
A. G.
,
Hinton
,
D. P.
,
Chau
,
A. H.
,
Kim
,
L. A.
, and
Kamm
,
R. D.
, 2004, “
Hemodynamics and Wall Mechanics in Human Carotid Bifurcation and Its Consequences for Atherogenesis: Investigation of Inter-Individual Variation
,”
Biomech. Model. Mechanobiol.
1617-7959,
3
(
1
), pp.
17
32
.
31.
Huo
,
Y.
,
Guo
,
X.
, and
Kassab
,
G. S.
, 2008, “
The Flow Field Along the Entire Length of Mouse Aorta and Primary Branches
,”
Ann. Biomed. Eng.
0090-6964,
36
(
5
), pp.
685
699
.
You do not currently have access to this content.