The inhalation of micron-sized aerosols into the lung’s acinar region may be recognized as a possible health risk or a therapeutic tool. In an effort to develop a deeper understanding of the mechanisms responsible for acinar deposition, we have numerically simulated the transport of nondiffusing fine inhaled particles ( and in diameter) in two acinar models of varying complexity: (i) a simple alveolated duct and (ii) a space-filling asymmetrical acinar branching tree following the description of lung structure by Fung (1988, “A Model of the Lung Structure and Its Validation,” J. Appl. Physiol., 64, pp. 2132–2141). Detailed particle trajectories and deposition efficiencies, as well as acinar flow structures, were investigated under different orientations of gravity, for tidal breathing motion in an average human adult. Trajectories and deposition efficiencies inside the alveolated duct are strongly related to gravity orientation. While the motion of larger particles is relatively insensitive to convective flows compared with the role of gravitational sedimentation, finer aerosols may exhibit, in contrast, complex kinematics influenced by the coupling between (i) flow reversal due to oscillatory breathing, (ii) local alveolar flow structure, and (iii) streamline crossing due to gravity. These combined mechanisms may lead to twisting and undulating trajectories in the alveolus over multiple breathing cycles. The extension of our study to a space-filling acinar tree was well suited to investigate the influence of bulk kinematic interaction on aerosol transport between ductal and alveolar flows. We found the existence of intricate trajectories of fine aerosols spanning over the entire acinar airway network, which cannot be captured by simple alveolar models. In contrast, heavier aerosols yield trajectories characteristic of gravitational sedimentation, analogous to those observed in the simple alveolated duct. For both particle sizes, however, particle inhalation yields highly nonuniform deposition. While larger particles deposit within a single inhalation phase, finer particles exhibit much longer residence times spanning multiple breathing cycles. With the ongoing development of more realistic models of the pulmonary acinus, we aim to capture some of the complex mechanisms leading to deposition of inhaled aerosols. Such models may lead to a better understanding toward the optimization of pulmonary drug delivery to target specific regions of the lung.
Skip Nav Destination
Article navigation
March 2009
Research Papers
Respiratory Flow Phenomena and Gravitational Deposition in a Three-Dimensional Space-Filling Model of the Pulmonary Acinar Tree
Thomas Heimsch,
Thomas Heimsch
Institute of Fluid Dynamics,
ETH Zurich
, CH-8092 Zurich, Switzerland
Search for other works by this author on:
Johannes H. Wildhaber,
Johannes H. Wildhaber
Department of Pediatrics,
Cantonal Hospital
, CH-1708 Fribourg, Switzerland
Search for other works by this author on:
Akira Tsuda,
Akira Tsuda
Molecular and Integrative Physiological Sciences,
Harvard School of Public Health
, Boston, MA 02115
Search for other works by this author on:
Thomas Rösgen
Thomas Rösgen
Institute of Fluid Dynamics,
ETH Zurich
, CH-8092 Zurich, Switzerland
Search for other works by this author on:
Josué Sznitman
Thomas Heimsch
Institute of Fluid Dynamics,
ETH Zurich
, CH-8092 Zurich, Switzerland
Johannes H. Wildhaber
Department of Pediatrics,
Cantonal Hospital
, CH-1708 Fribourg, Switzerland
Akira Tsuda
Molecular and Integrative Physiological Sciences,
Harvard School of Public Health
, Boston, MA 02115
Thomas Rösgen
Institute of Fluid Dynamics,
ETH Zurich
, CH-8092 Zurich, SwitzerlandJ Biomech Eng. Mar 2009, 131(3): 031010 (16 pages)
Published Online: January 7, 2009
Article history
Received:
September 3, 2007
Revised:
August 5, 2008
Published:
January 7, 2009
Citation
Sznitman, J., Heimsch, T., Wildhaber, J. H., Tsuda, A., and Rösgen, T. (January 7, 2009). "Respiratory Flow Phenomena and Gravitational Deposition in a Three-Dimensional Space-Filling Model of the Pulmonary Acinar Tree." ASME. J Biomech Eng. March 2009; 131(3): 031010. https://doi.org/10.1115/1.3049481
Download citation file:
Get Email Alerts
Related Articles
Flow Field Analysis in Expanding Healthy and Emphysematous Alveolar Models Using Particle Image Velocimetry
J Biomech Eng (February,2010)
Targeted Drug Aeroso Deposition Analysis for a Four-Generation Lung Airway Model With Hemispherical Tumors
J Biomech Eng (April,2003)
Analytical Solution for Newtonian Laminar Flow Through the Concave and Convex Ducts
J. Fluids Eng (September,2009)
Optimal Drug-Aerosol Delivery to Predetermined Lung Sites
J. Heat Transfer (January,2011)
Related Proceedings Papers
Related Chapters
Collection and Characteristics of Mycobacteria in Aerosols
Biological Contaminants in Indoor Environments
The Fog Sedimentation Rate Control and Simulation of Salt Spray System
International Conference on Information Technology and Computer Science, 3rd (ITCS 2011)
A Review of Ultrahigh Resolution Sizing of Single Droplets by Resonance Light Scattering
Liquid Particle Size Measurement Techniques