An investigation of collagen fiber reorientation, as well as fluid and matrix movement of equine articular cartilage and subchondral bone under compressive mechanical loads, was undertaken using small angle X-ray scattering measurements and optical microscopy. Small angle X-ray scattering measurements were made on healthy and diseased samples of equine articular cartilage and subchondral bone mounted in a mechanical testing apparatus on station ID18F of ESRF, Grenoble, together with fiber orientation analysis using polarized light and displacement measurements of the cartilage matrix and fluid using tracers. At surface pressures of up to approximately 1.5 MPa, there was reversible compression of the tangential surface fibers and immediately subjacent zone. As load increased, deformation in these zones reached a maximum and then reorientation propagated to the radial deep zone. Between surface pressures of 4.8 MPa and 6.0 MPa, fiber orientation above the tide mark rotated 10 deg from the radial direction, with an overall loss of alignment. With further increase in load, the fibers “crimped” as shown by the appearance of subsidiary peaks approximately ±10deg either side of the principal fiber orientation direction. Failure at higher loads was characterized by a radial split in the deep cartilage, which propagated along the tide mark while the surface zone remained intact. In lesions, the fiber organization was disrupted and the initial response to load was consistent with early rupture of fibers, but the matrix relaxed to an organization very similar to that of the unloaded tissue. Tracer measurements revealed anisotropic solid and fluid displacement, which depended strongly on depth within the tissue.

1.
Stockwell
,
R. A.
, 1979,
Biology of Cartilage Cells
,
Cambridge University Press
,
Cambridge
, pp.
241
263
.
2.
Maroudas
,
A.
, 1976, “
Balance Between Swelling Pressure and Collagen Tension in Normal and Degenerate Cartilage
,”
Nature (London)
0028-0836,
260
, pp.
808
809
.
3.
Minns
,
R. J.
, and
Steven
,
F. S.
, 1977, “
The Collagen Fibril Organization in Human Articular Cartilage
,”
J. Anat.
,
123
(
2
), pp.
437
457
. 0021-8782
4.
Kaab
,
M. J.
,
Ito
,
K.
,
Rahn
,
B.
,
Clark
,
J. M.
, and
Notzli
,
H. P.
, 2000, “
Effect of Mechanical Load on Articular Cartilage Collagen Structure: A Scanning Electron-Microscope Study
,”
Cells Tissues Organs
,
167
, pp.
106
120
. 1422-6405
5.
Clark
,
J. M.
, 1990, “
The Organisation of Collagen Fibrils in the Superficial Zones of Articular Cartilage
,”
J. Anat.
,
171
, pp.
117
130
. 0021-8782
6.
Hwang
,
W. S.
,
Li
,
B.
,
Jin
,
L. H.
,
Ngo
,
K.
,
Schachar
,
N. S.
, and
Hughes
,
G. N.
, 1992, “
Collagen Fibril Structure of Normal, Aging, and Osteoarthritic Cartilage
,”
J. Pathol.
0022-3417,
167
(
4
), pp.
425
433
.
7.
Kaab
,
M. J.
,
Gwynn
,
I. A.
, and
Notzli
,
H. P.
, 1998, “
Collagen Fibre Arrangement in the Tibial Plateau Articular Cartilage of Man and Other Mammalian Species
,”
J. Anat.
0021-8782,
193
(
Pt 1
), pp.
23
34
.
8.
Yarker
,
Y. E.
,
Aspden
,
R. M.
, and
Hukins
,
D. W. L.
, 1983, “
Birefringence of Articular Cartilage and the Distribution on Collagen Fibril Orientations
,”
Connect. Tissue Res.
,
11
(
2&3
), pp.
207
213
. 0300-8207
9.
Broom
,
N. D.
, and
Flachsmann
,
R.
, 2003, “
Physical Indicators of Cartilage Health: The Relevance of Compliance, Thickness, Swelling and Fibrillar Texture
,”
J. Anat.
,
202
(
6
), pp.
481
494
. 0021-8782
10.
Ugryumova
,
N.
,
Attenburrow
,
D. P.
,
Winlove
,
C. P.
, and
Matcher
,
S. J.
, 2005, “
The Collagen Structure of Equine Articular Cartilage, Characterized Using Polarization-Sensitive Optical Coherence Tomography
,”
J. Phys. D
0022-3727,
38
, pp.
2612
2619
.
11.
Little
,
K.
,
Pimm
,
L. H.
, and
Trueta
,
J.
, 1958, “
Osteoarthritis of the Hip—An Electron Microscope Study
,”
J. Bone Joint Surg. Br.
,
40-B
(
1
), pp.
123
131
. 0301-620X
12.
Herbage
,
D.
,
Huc
,
A.
,
Chapuy
,
M. C.
, and
Chabrand
,
D.
, 1972, “
Physiochemical Study of Articular-Cartilage From Healthy and Osteo-Arthrtic Human Hips—Orientation and Thermal-Stability of Collagen Fibers
,”
Biochim. Biophys. Acta
,
271
(
2
), pp.
339
346
. 0006-3002
13.
Aspden
,
R. M.
, and
Hukins
,
D. W. L.
, 1981, “
Collagen Organization in Articular Cartilage, Determined by X-Ray Diffraction, and Its Relationship to Tissue Function
,”
Proc. R. Soc. London, Ser. B
,
212
, pp.
299
304
. 0962-8452
14.
Muehleman
,
C.
,
Majumdar
,
S.
,
Issever
,
A. S.
,
Arfelli
,
F.
,
Menk
,
R. -H.
,
Rigon
,
L.
,
Heitner
,
G.
,
Reime
,
B.
,
Metge
,
J.
,
Wagner
,
A.
,
Kuettner
,
K. E.
, and
Mollenhauer
,
J.
, 2004, “
X-Ray Detection of Structural Orientation in Human Articular Cartilage
,”
Osteoarthritis Cartilage
,
12
(
2
), pp.
97
105
. 1063-4584
15.
Mollenhauer
,
J.
,
Aurich
,
M.
,
Muehleman
,
C.
,
Khelashvilli
,
G.
, and
Irving
,
T. C.
, 2003, “
X-Ray Diffraction of the Molecular Substructure of Human Articular Cartilage
,”
Connect. Tissue Res.
,
44
(
5
), pp.
201
207
. 0300-8207
16.
Moger
,
C. J.
,
Barrett
,
R.
,
Bleuet
,
P.
,
Bradley
,
D. A.
,
Ellis
,
R. E.
,
Green
,
E. M.
,
Knapp
,
K. M.
,
Muthuvelu
,
P.
, and
Winlove
,
C. P.
, 2007, “
Regional Variations of Collagen Orientation in Normal and Diseased Articular Cartilage and Subchondral Bone Determined Using Small Angle X-ray Scattering (SAXS)
,”
Osteoarthritis Cartilage
,
15
, pp.
682
687
. 1063-4584
17.
Buckwalter
,
J. A.
,
Martin
,
J. A.
, and
Brown
,
T. D.
, 2006, “
Perspective on Chondrocyte Mechanobiology and Osteoarthritis
,”
Biorheology
,
43
, pp.
603
609
. 0006-355X
18.
Klein
,
J. A.
, and
Hukins
,
D. W. L.
, 1982, “
X-Ray Diffraction Demonstrates Reorientation of Collagen Fibres in the Annulus Fibrosus During Compression of the Intervertabral Disc
,”
Biochim. Biophys. Acta
,
717
(
1
), pp.
61
64
. 0006-3002
19.
Brama
,
P. A.
,
Karssenberg
,
D.
,
Barneveld
,
A.
, and
van Weeren
,
P. R.
, 2001, “
Contact Areas and Pressure Distribution on the Proximal Articular Surface of the Proximal Phalanx Under Sagittal Plane Loading
,”
Equine Vet. J.
,
33
(
1
), pp.
26
32
. 0425-1644
20.
Brommer
,
H.
,
van Weeren
,
P. R.
,
Brama
,
P. A.
, and
Barneveld
,
A.
, 2003, “
Quantification and Age-Related Distribution of Articular Cartilage Degeneration in the Equine Fetlock Joint
,”
Equine Vet. J.
,
35
(
7
), pp.
697
701
. 0425-1644
21.
Price
,
R. I.
,
Lees
,
S.
, and
Kirschner
,
D. A.
, 1997, “
X-Ray Diffraction Analysis of Tendon Collagen at Ambient and Cryogenic Temperatures: Role of Hydration
,”
Int. J. Biol. Macromol.
0141-8130,
20
(
1
), pp.
23
33
.
22.
Arkill
,
K. P.
, and
Winlove
,
C. P.
, 2007, “
Solute Transport in the Deep are Calcified Zones of the Articular Cartilage
,”
Osteoarthritis Cartilage
1063-4584,
16
(
6
), pp.
708
714
.
23.
Torzilli
,
P. A.
,
Deng
,
X. -H.
, and
Ramcharan
,
M.
, 2006, “
Effect of Compressive Strain on Cell Viability in Statically Loaded Articular Cartilage
,”
Biomech. Model. Mechanobiol.
1617-7959,
5
, pp.
123
132
.
24.
Kaab
,
M. J.
,
Ito
,
K.
,
Clark
,
J. M.
, and
Notzli
,
H. P.
, 1998, “
Deformation of Articular Cartilage Collagen Structure Under Static and Cyclic Loading
,”
J. Orthop. Res.
,
16
(
6
), pp.
743
751
. 0736-0266
25.
Mow
,
V. C.
,
Holmes
,
M. H.
, and
Lai
,
W. M.
, 1984, “
Fluid Transport and Mechanical Properties of Articular Cartilage: A Review
,”
J. Biomech.
0021-9290,
17
(
5
), pp.
377
394
.
26.
Jurvelin
,
J. S.
,
Arokoski
,
J. P. A.
,
Hunziker
,
E. B.
, and
Helminen
,
H. J.
, 2000, “
Topographical Variation of the Elastic Properties of Articular Cartilage in the Canine Knee
,”
J. Biomech.
,
33
, pp.
669
675
. 0021-9290
You do not currently have access to this content.