The next generation of medical devices and engineered tissues will require development of scaffolds that mimic the structural and functional properties of the extracellular matrix (ECM) component of tissues. Unfortunately, little is known regarding how ECM microstructure participates in the transmission of mechanical load information from a global (tissue or construct) level to a level local to the resident cells ultimately initiating relevant mechanotransduction pathways. In this study, the transmission of mechanical strains at various functional levels was determined for three-dimensional (3D) collagen ECMs that differed in fibril microstructure. Microstructural properties of collagen ECMs (e.g., fibril density, fibril length, and fibril diameter) were systematically varied by altering in vitro polymerization conditions. Multiscale images of the 3D ECM macro- and microstructure were acquired during uniaxial tensile loading. These images provided the basis for quantification and correlation of strains at global and local levels. Results showed that collagen fibril microstructure was a critical determinant of the 3D global and local strain behaviors. Specifically, an increase in collagen fibril density reduced transverse strains in both width and thickness directions at both global and local levels. Similarly, collagen ECMs characterized by increased fibril length and decreased fibril diameter exhibited increased strain in width and thickness directions in response to loading. While extensional strains measured globally were equivalent to applied strains, extensional strains measured locally consistently underpredicted applied strain levels. These studies demonstrate that regulation of collagen fibril microstructure provides a means to control the 3D strain response and strain transfer properties of collagen-based ECMs.

1.
Brown
,
T. D.
, 2000, “
Techniques for Mechanical Stimulation of Cells In Vitro: A Review
,”
J. Biomech.
0021-9290,
33
(
1
), pp.
3
14
.
2.
Tomasek
,
J. J.
,
Gabbiani
,
G.
,
Hinz
,
B.
,
Chaponnier
,
C.
, and
Brown
,
R. A.
, 2002, “
Myofibroblasts and Mechanoregulation of Connective Tissue Remodeling
,”
Nat. Rev. Mol. Cell Biol.
,
3
(
5
), pp.
349
363
. 1471-0072
3.
Butler
,
D. L.
,
Goldstein
,
S. A.
, and
Guilak
,
F.
, 2000, “
Functional Tissue Engineering: The Role of Biomechanics
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
6
), pp.
570
575
.
4.
Birk
,
D. E.
,
Zycband
,
E. I.
,
Woodruff
,
S.
,
Winkelmann
,
D. A.
, and
Trelstad
,
R. L.
, 1997, “
Collagen Fibrillogenesis In Situ: Fibril Segments Become Long Fibrils as the Developing Tendon Matures
,”
Dev. Dyn.
1058-8388,
208
(
3
), pp.
291
298
.
5.
Ottani
,
V.
,
Raspanti
,
M.
, and
Ruggeri
,
A.
, 2001, “
Collagen Structure and Functional Implications
,”
Micron
0968-4328,
32
(
3
), pp.
251
260
.
6.
Parry
,
D. A.
, 1988, “
The Molecular and Fibrillar Structure of Collagen and Its Relationship to the Mechanical Properties of Connective Tissue
,”
Biophys. Chem.
0301-4622,
29
(
1–2
), pp.
195
209
.
7.
Bateman
,
J. F.
,
Lamande
,
S. R.
, and
Ramshaw
,
J. A. M.
, 1996, “
Collagen Superfamily
,”
Extracellular Matrix
(
Molecular Components and Interaction
Vol.
2
),
W. D.
Comper
, ed.,
Harwood Academic
,
The Netherlands
, pp.
22
67
.
8.
Veis
,
A.
, and
George
,
A.
, 1994, “
Fundamentals of Interstitial Collagen Assembly
,”
Extracellular Matrix Assembly and Structure
,
P. D.
Urcheno
, ed.,
Academic
,
San Diego, CA
, pp.
15
45
.
9.
Roeder
,
B. A.
,
Kokini
,
K.
,
Sturgis
,
J. E.
,
Robinson
,
J. P.
, and
Voytik-Harbin
,
S. L.
, 2002, “
Tensile Mechanical Properties of Three-Dimensional Type I Collagen Extracellular Matrices With Varied Microstructure
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
2
), pp.
214
222
.
10.
Matsuda
,
K.
,
Suzuki
,
S.
,
Isshiki
,
N.
,
Yoshioka
,
K.
,
Okada
,
T.
, and
Ikada
,
Y.
, 1990, “
Influence of Glycosaminoglycans on the Collagen Sponge Component of a Bilayer Artificial Skin
,”
Biomaterials
0142-9612,
11
(
5
), pp.
351
355
.
11.
Hsu
,
S.
,
Jamieson
,
A. M.
, and
Blackwell
,
J.
, 1994, “
Viscoelastic Studies of Extracellular Matrix Interactions in a Model Native Collagen Gel System
,”
Biorheology
,
31
(
1
), pp.
21
36
. 0006-355X
12.
Chen
,
C. S.
,
Yannas
,
I. V.
, and
Spector
,
M.
, 1995, “
Pore Strain Behavior of Collagen Glycosaminoglycan Analogues of Extracellular Matrix
,”
Biomaterials
0142-9612,
16
(
10
), pp.
777
783
.
13.
Osborne
,
C. S.
,
Barbenel
,
J. C.
,
Smith
,
D.
,
Savakis
,
M.
, and
Grant
,
M. H.
, 1998, “
Investigation Into the Tensile Properties of Collagen/Chondroitin-6-Sulphate Gels: The Effect of Crosslinking Agents and Diamines
,”
Med. Biol. Eng. Comput.
,
36
(
1
), pp.
129
134
. 0140-0118
14.
Yannas
,
I. V.
, and
Burke
,
J. F.
, 1980, “
Design of an Artificial Skin. I. Basic Design Principles
,”
J. Biomed. Mater. Res.
0021-9304,
14
(
1
), pp.
65
81
.
15.
Law
,
J. K.
,
Parsons
,
J. R.
,
Silver
,
F. H.
, and
Weiss
,
A. B.
, 1989, “
An Evaluation of Purified Reconstituted Type I Collagen Fibers
,”
J. Biomed. Mater. Res.
,
23
(
9
), pp.
961
977
. 0021-9304
16.
Dunn
,
M. G.
,
Avasarala
,
P. N.
, and
Zawadsky
,
J. P.
, 1993, “
Optimization of Extruded Collagen Fibers for ACL Reconstruction
,”
J. Biomed. Mater. Res.
,
27
(
12
), pp.
1545
1552
. 0021-9304
17.
Pins
,
G. D.
,
Christiansen
,
D. L.
,
Patel
,
R.
, and
Silver
,
F. H.
, 1997a, “
Self-Assembly of Collagen Fibers. Influence of Fibrillar Alignment and Decorin on Mechanical Properties
,”
Biophys. J.
,
73
(
4
), pp.
2164
2172
. 0006-3495
18.
Pins
,
G. D.
,
Huang
,
E. K.
,
Christiansen
,
D. L.
, and
Silver
,
F. H.
, 1997b, “
Effects of Static Axial Strain on the Tensile Properties and Failure Mechanisms of Self-Assembled Collagen Fibers
,”
J. Appl. Polym. Sci.
0021-8995,
63
(
11
), pp.
1429
1440
.
19.
Silver
,
F. H.
,
Christiansen
,
D. L.
,
Snowhill
,
P. B.
, and
Chen
,
Y.
, 2000, “
Role of Storage on Changes in the Mechanical Properties of Tendon and Self-Assembled Collagen Fibers
,”
Connect. Tissue Res.
,
41
(
2
), pp.
155
164
. 0300-8207
20.
Christiansen
,
D. L.
,
Huang
,
E. K.
, and
Silver
,
F. H.
, 2000, “
Assembly of Type I Collagen: Fusion of Fibril Subunits and the Influence of Fibril Diameter on Mechanical Properties
,”
Matrix Biol.
0945-053X,
19
(
5
), pp.
409
420
.
21.
Girton
,
T. S.
,
Barocas
,
V. H.
, and
Tranquillo
,
R. T.
, 2002, “
Confined Compression of a Tissue-Equivalent: Collagen Fibril and Cell Alignment in Response to Anisotropic Strain
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
5
), pp.
568
575
.
22.
Puxkandl
,
R.
,
Zizak
,
I.
,
Paris
,
O.
,
Keckes
,
J.
,
Tesch
,
W.
,
Bernstorff
,
S.
,
Purslow
,
P.
, and
Fratzl
,
P.
, 2002, “
Viscoelastic Properties of Collagen: Synchrotron Radiation Investigations and Structural Model
,”
Philos. Trans. R. Soc. London, Ser. B
0962-8436,
357
(
1418
), pp.
191
197
.
23.
Screen
,
H. R.
,
Lee
,
D. A.
,
Bader
,
D. L.
, and
Shelton
,
J. C.
, 2004, “
An Investigation Into the Effects of the Hierarchical Structure of Tendon Fascicles on Micromechanical Properties
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
218
(
2
), pp.
109
119
. 0954-4119
24.
Voytik-Harbin
,
S. L.
,
Roeder
,
B. A.
,
Sturgis
,
J. E.
,
Kokini
,
K.
, and
Robinson
,
J. P.
, 2003, “
Simultaneous Mechanical Loading and Confocal Reflection Microscopy for 3D Micro-Biomechanical Analysis of Biomaterials and Tissue Constructs
,”
Microsc. Microanal.
1431-9276,
9
(
1
), pp.
74
85
.
25.
Roeder
,
B. A.
,
Kokini
,
K.
,
Robinson
,
J. P.
, and
Voytik-Harbin
,
S. L.
, 2004, “
Local, Three-Dimensional Strain Measurements Within Largely-Deformed Extracellular Matrix Constructs
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
6
), pp.
699
708
.
26.
Brightman
,
A. O.
,
Rajwa
,
B. P.
,
Sturgis
,
J. E.
,
McCallister
,
M. E.
,
Robinson
,
J. P.
, and
Voytik-Harbin
,
S. L.
, 2000, “
Time-Lapse Confocal Reflection Microscopy of Collagen Fibrillogenesis and Extracellular Matrix Assembly In Vitro
,”
Biopolymers
0006-3525,
54
(
3
), pp.
222
234
.
27.
Voytik-Harbin
,
S. L.
,
Rajwa
,
B. P.
, and
Robinson
,
J. P.
, 2001, “
3D Imaging of ECM and ECM-Cell Interactions
,”
Methods Cell Biol.
,
63
, pp.
583
596
. 0091-679X
28.
Kadler
,
K. E.
,
Holmes
,
D. F.
,
Graham
,
H.
, and
Starborg
,
T.
, 2000, “
Tip-Mediated Fusion Involving Unipolar Collagen Fibrils Accounts for Rapid Fibril Elongation, the Occurrence of Fibrillar Branched Networks in Skin and the Paucity of Collagen Fibril Ends in Vertebrates
,”
Matrix Biol.
0945-053X,
19
(
4
), pp.
359
365
.
29.
Kolodney
,
M. S.
, and
Wysolmerski
,
R. B.
, 1992, “
Isometric Contraction by Fibroblasts and Endothelial Cells in Tissue Culture: A Quantitative Study
,”
J. Cell Biol.
0021-9525,
117
(
1
), pp.
73
82
.
30.
Kempson
,
G. E.
, 1979, “
Mechanical Properties of Articular Cartilage
,”
Adult Articular Cartilage
,
M. A. R.
Freeman
, ed.,
Grune & Stratton
,
New York
, pp.
171
227
.
31.
Elliott
,
D. M.
,
Narmoneva
,
D. A.
, and
Setton
,
L. A.
, 2002, “
Direct Measurement of the Poisson’s Ratio of Human Patella Cartilage in Tension
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
2
), pp.
223
228
.
32.
Whitty
,
J. P. M.
,
Nazare
,
F.
, and
Aldersen
,
A.
, 2002, “
Modelling the Effects of Density Variation on the In-Plane Poisson’s Ratios and Young’s Moduli of Periodic Conventional and Re-Entrant Honeycombs–Part I: Rib Thickness Variations
,”
Cell. Polym.
0262-4893,
21
(
2
), pp.
69
98
.
You do not currently have access to this content.