The hinge region of a mechanical bileaflet valve is implicated in blood damage and initiation of thrombus formation. Detailed fluid dynamic analysis in the complex geometry of the hinge region during the closing phase of the bileaflet valve is the focus of this study to understand the effect of fluid-induced stresses on the activation of platelets. A fixed-grid Cartesian mesh flow solver is used to simulate the blood flow through a two-dimensional geometry of the hinge region of a bileaflet mechanical valve. Use of local mesh refinement algorithm provides mesh adaptation based on the gradients of flow in the constricted geometry of the hinge. Leaflet motion is specified from the fluid-structure interaction analysis of the leaflet dynamics during the closing phase from a previous study, which focused on the fluid mechanics at the gap between the leaflet edges and the valve housing. A Lagrangian particle tracking method is used to model and track the platelets and to compute the magnitude of the shear stress on the platelets as they pass through the hinge region. Results show that there is a boundary layer separation in the gaps between the leaflet ear and the constricted hinge geometry. Separated shear layers roll up into vortical structures that lead to high residence times combined with exposure to high-shear stresses for particles in the hinge region. Particles are preferentially entrained into this recirculation zone, presenting the possibility of platelet activation, aggregation, and initiation of thrombi.

1.
Yoganathan
,
A. P.
,
Chandran
,
K. B.
, and
Sotiropoulos
,
F.
, 2005, “
Flow in Prosthetic Heart Valves: State-of-the-Art and Future Directions
,”
Ann. Biomed. Eng.
0090-6964,
33
(
12
), pp.
1689
1694
.
2.
Yoganathan
,
A. P.
,
He
,
Z.
, and
Casey Jones
,
S.
, 2004, “
Fluid Mechanics of Heart Valves
,”
Annu. Rev. Biomed. Eng.
1523-9829,
6
, pp.
331
362
.
3.
Cannegieter
,
S. C.
,
Rosendaal
,
F. R.
, and
Briet
,
E.
, 1994, “
Thromboembolic and Bleeding Complications in Patients With Mechanical Heart Valve Prostheses
,”
Circulation
0009-7322,
89
(
2
), pp.
635
641
.
4.
Einav
,
S.
, and
Bluestein
,
D.
, 2004, “
Dynamics of Blood Flow and Platelet Transport in Pathological Vessels
,”
Ann. N.Y. Acad. Sci.
0077-8923,
1015
, pp.
351
366
.
5.
Hellums
,
J. D.
, 1994, “
1993 Whitaker Lecture: Biorheology in Thrombosis Research
,”
Ann. Biomed. Eng.
0090-6964,
22
(
5
), pp.
445
455
.
6.
Bluestein
,
D.
,
Niu
,
L.
,
Schoephoerster
,
R. T.
, and
Dewanjee
,
M. K.
, 1997, “
Fluid Mechanics of Arterial Stenosis: Relationship to the Development of Mural Thrombus
,”
Ann. Biomed. Eng.
0090-6964,
25
(
2
), pp.
344
356
.
7.
Jesty
,
J.
,
Yin
,
W.
,
Perrotta
,
P.
, and
Bluestein
,
D.
, 2003, “
Platelet Activation in a Circulating Flow Loop: Combined Effects of Shear Stress and Exposure Time
,”
Platelets
,
14
(
3
), pp.
143
149
, http://www.informaworld.com/smpp/title~content=t713442010~db=allhttp://www.informaworld.com/smpp/title~content=t713442010~db=all.
8.
Ramstack
,
J. M.
,
Zuckerman
,
L.
, and
Mockros
,
L. F.
, 1979, “
Shear-Induced Activation of Platelets
,”
J. Biomech.
0021-9290,
12
(
2
), pp.
113
125
.
9.
Krishnan
,
S.
,
Udaykumar
,
H. S.
,
Marshall
,
J. S.
, and
Chandran
,
K. B.
, 2006, “
Two-Dimensional Dynamic Simulation of Platelet Activation During Mechanical Heart Valve Closure
,”
Ann. Biomed. Eng.
0090-6964,
34
(
10
), pp.
1519
1534
.
10.
Ellis
,
J. T.
,
Healy
,
T. M.
,
Fontaine
,
A. A.
,
Saxena
,
R.
, and
Yoganathan
,
A. P.
, 1996, “
Velocity Measurements and Flow Patterns Within the Hinge Region of a Medtronic Parallel Bileaflet Mechanical Valve With Clear Housing
,”
J. Heart Valve Dis.
0966-8519,
5
(
6
), pp.
591
599
.
11.
Healy
,
T. M.
,
Fontaine
,
A. A.
,
Ellis
,
J. T.
,
Walton
,
S. P.
, and
Yoganathan
,
A. P.
, 1998, “
Visualization of the Hinge Flow in a 5:1 Scaled Model of the Medtronic Parallel Bileaflet Heart Valve Prosthesis
,”
Exp. Fluids
0723-4864,
25
(
5–6
), pp.
512
518
.
12.
Bodnar
,
E.
,
Grunkemeier
,
G. L.
, and
Gabbay
,
S.
, 1999, “
Heart Valve Replacement: A Statistical Review of 35Years Results—Discussion
,”
J. Heart Valve Dis.
0966-8519,
8
, pp.
470
471
.
13.
Manning
,
K. B.
,
Kini
,
V.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
, and
Tarbell
,
J. M.
, 2003, “
Regurgitant Flow Field Characteristics of the St. Jude Bileaflet Mechanical Heart Valve Under Physiologic Pulsatile Flow Using Particle Image Velocimetry
,”
Artif. Organs
0160-564X,
27
(
9
), pp.
840
846
.
14.
Woo
,
Y. R.
, and
Yoganathan
,
A. P.
, 1986, “
Pulsatile Flow Velocity and Shear Stress Measurements on the St. Jude Bileaflet Valve Prosthesis
,”
Scand. J. Thorac. Cardiovasc. Surg.
0036-5580,
20
(
1
), pp.
15
28
.
15.
Gross
,
J. M.
,
Shu
,
M. C.
,
Dai
,
F. F.
,
Ellis
,
J.
, and
Yoganathan
,
A. P.
, 1996, “
A Microstructural Flow Analysis Within a Bileaflet Mechanical Heart Valve Hinge
,”
J. Heart Valve Dis.
0966-8519,
5
(
6
), pp.
581
590
.
16.
Simon
,
H. A.
,
Leo
,
H. L.
,
Carberry
,
J.
, and
Yoganathan
,
A. P.
, 2004, “
Comparison of the Hinge Flow Fields of Two Bileaflet Mechanical Heart Valves Under Aortic and Mitral Conditions
,”
Ann. Biomed. Eng.
0090-6964,
32
(
12
), pp.
1607
1617
.
17.
Gao
,
Z. B.
,
Hosein
,
N.
,
Dai
,
F. F.
, and
Hwang
,
N. H.
, 1999, “
Pressure and Flow Fields in the Hinge Region of Bileaflet Mechanical Heart Valves
,”
J. Heart Valve Dis.
0966-8519,
8
(
2
), pp.
197
205
.
18.
Quinlan
,
N. J.
, 2006, “
Comment on “Prosthetic Heart Valves’ Mechanical Loading of Red Blood Cells in Patients With Hereditary Membrane Defects” by Grigioni et al., Jou. Biomecha., 38, pp. 1557–1565
,”
J. Biomech.
0021-9290,
39
(
13
), pp.
2542
2544
.
19.
Quinlan
,
N. J.
, and
Dooley
,
P. N.
, 2007, “
Models of Flow-Induced Loading on Blood Cells in Laminar and Turbulent Flow, With Application to Cardiovascular Device Flow
,”
Ann. Biomed. Eng.
0090-6964,
35
(
8
), pp.
1347
1356
.
20.
Ge
,
L.
,
Dasi
,
L. P.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
, 2008, “
Characterization of Hemodynamic Forces Induced by Mechanical Heart Valves: Reynolds vs Viscous Shear Stresses
,”
Ann. Biomed. Eng.
0090-6964,
36
(
2
), pp.
276
297
.
21.
Dasi
,
L. P.
,
Ge
,
L.
,
Simon
,
H. A.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
, 2007, “
Vorticity Dynamics of a Bileaflet Mechanical Valve in an Asymmetric Aorta
,”
Phys. Fluids
1070-6631,
19
, pp.
1
17
.
22.
Ellis
,
J. T.
,
Travis
,
B. R.
, and
Yoganathan
,
A. P.
, 2000, “
An In Vitro Study of the Hinge and Near-Field Forward Flow Dynamics of the St. Jude Medical Regent Bileaflet Mechanical Heart Valve
,”
Ann. Biomed. Eng.
0090-6964,
28
(
5
), pp.
524
532
.
23.
Marella
,
S.
,
Krishnan
,
S.
,
Liu
,
H.
, and
Udaykumar
,
H. S.
, 2005, “
Sharp Interface Cartesian Grid Method I: An Easily Implemented Technique for 3D Moving Boundary Computations
,”
J. Comput. Phys.
0021-9991,
210
, pp.
1
31
.
24.
Liu
,
H.
,
Krishnan
,
S.
,
Marella
,
S.
, and
Udaykumar
,
H. S.
, 2005, “
Sharp Interface Cartesian Grid Method II: A Technique for Simulating Droplet Interactions With Surfaces of Arbitrary Shape
,”
J. Comput. Phys.
0021-9991,
210
, pp.
32
54
.
25.
Udaykumar
,
H.
,
Mittal
,
R.
,
Rampunggoon
,
P.
, and
Khanna
,
A.
, 2001, “
A Fixed Grid Sharp Interface Method for Flows in the Presence of Moving Embedded Solid Boundaries
,”
J. Comput. Phys.
0021-9991,
174
, pp.
1
36
.
26.
Udaykumar
,
H. S.
,
Marella
,
S.
, and
Krishnan
,
S.
, 2003, “
Sharp-Interface Simulation of Dendritic Growth With Convection: Benchmarks
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2615
2627
.
27.
Greaves
,
D.
, 2004, “
A Quadtree Adaptive Method for Simulating Fluid Flows With Moving Interfaces
,”
J. Comput. Phys.
0021-9991,
194
, pp.
35
56
.
28.
Greaves
,
D.
, 2004, “
Simulations of Interfaces and Free Surface Flows in a Viscous Fluid Using Adaptive Quadtree Grids
,”
Int. J. Numer. Methods Fluids
0271-2091,
44
, pp.
1093
1117
.
29.
Chen
,
H.
, and
Marshall
,
J. S.
, 1999, “
A Lagrangian Vorticity Method for Two-Phase Particulate Flows With Two-Way Coupling
,”
J. Comput. Phys.
0021-9991,
148
, pp.
169
198
.
30.
Lai
,
Y. G.
,
Chandran
,
K. B.
, and
Lemmon
,
J.
, 2002, “
A Numerical Simulation of Mechanical Heart Valve Closure Fluid Dynamics
,”
J. Biomech.
0021-9290,
35
(
7
), pp.
881
892
.
31.
Bluestein
,
D.
,
Yin
,
W.
,
Affeld
,
K.
, and
Jesty
,
J.
, 2004, “
Flow-Induced Platelet Activation in Mechanical Heart Valves
,”
J. Heart Valve Dis.
0966-8519,
13
(
3
), pp.
501
508
.
32.
Colantoini
,
G.
,
Hellums
,
J. D.
,
Maoke
,
J. L.
, and
Alfrey
,
C. P.
, Jr.
, 1977, “
The Response of Human Platelets to Shear Stress at Short Exposure Times
,”
Trans. Am. Soc. Artif. Intern. Organs
0066-0078,
23
, pp.
626
631
.
33.
Brown
,
C.
,
Leverett
,
L.
,
Lewis
,
C.
,
Alfrey
,
C.
, and
Hellums
,
J.
, 1975, “
Morphological, Biochemical, and Functional Changes in Human Platelets Subjected to Shear Stress
,”
J. Lab. Clin. Med.
0022-2143,
86
(
3
), pp.
462
471
.
34.
Anderson
,
G. H.
,
Hellums
,
J. D.
,
Moake
,
J. L.
, and
Alfrey
,
C. P.
, Jr.
, 1978, “
Platelet Lysis and Aggregation in Shear Fields
,”
Blood Cells
0340-4684,
4
(
3
), pp.
499
511
.
35.
Weston
,
M. W.
,
Goldstein
,
S.
,
Epting
,
R. E.
, II
,
He
,
S.
,
Mauldin
,
J. M.
, and
Yoganathan
,
A. P.
, 1997, “
Establishing a Protocol to Quantify Leaflet Fibroblast Responses to Physiologic Flow Through a Viable Heart Valve
,”
ASAIO J.
1058-2916,
43
(
5
), pp.
M377
M382
.
36.
Giddens
,
D. P.
,
Yoganathan
,
A. P.
, and
Schoen
,
F. J.
, 1993, “
Prosthetic Cardiac Valves
,”
Cardiovasc. Pathol.
1054-8807,
2
, pp.
S167
S177
.
37.
Tambasco
,
M.
, and
Steinman
,
D. A.
, 2003, “
Path-Dependent Hemodynamics of the Stenosed Carotid Bifurcation
,”
Ann. Biomed. Eng.
0090-6964,
31
(
9
), pp.
1054
1065
.
You do not currently have access to this content.