A lipid core that occupies a high proportion of the plaque volume in addition to a thin fibrous cap is a predominant indicator of plaque vulnerability. Nowadays, noninvasive imaging modalities can identify such structural components, however, morphological criteria alone cannot reliably identify high-risk plaques. Information, such as stresses in the lesion’s components, seems to be essential. This work presents a methodology able to analyze the effect of changes in the lipid core and calcification on the wall stresses, in particular, on the fibrous cap vulnerability. Using high-resolution magnetic resonance imaging and histology of an ex vivo human atherosclerotic carotid bifurcation, a patient-specific three-dimensional geometric model, consisting of four tissue components, is generated. The adopted constitutive model accounts for the nonlinear and anisotropic tissue behavior incorporating the collagen fiber orientation by means of a novel and robust algorithm. The material parameters are identified from experimental data. A novel stress-based computational cap vulnerability index is proposed to assess quantitatively the rupture-risk of fibrous caps. Nonlinear finite element analyses identify that the highest stress regions are located at the vicinity of the shoulders of the fibrous cap and in the stiff calcified tissue. A parametric analysis reveals a positive correlation between the increase in lipid core portion and the mechanical stress in the fibrous cap and, hence, the risk for cap rupture. The highest values of the vulnerability index, which correlate to more vulnerable caps, are obtained for morphologies for which the lipid cores were severe; heavily loaded fibrous caps were thus detected. The proposed multidisciplinary methodology is able to investigate quantitatively the mechanical behavior of atherosclerotic plaques in patient-specific stenoses. The introduced vulnerability index may serve as a more quantitative tool for diagnosis, treatment and prevention.

1.
Allender
,
St.
,
Scarborough
,
P.
,
Peto
,
V.
,
Rayner
,
M.
,
Leal
,
J.
,
Luengo-Fernandez
,
R.
, and
Gray
,
A.
, 2008, “
European Cardiovascular Disease Statistics, 2008 Edition
,” British Heart Foundation Health Promotion Research Group and Health Economic Research Centre, Department of Public Health, University of Oxford,. www.heartstats.orgwww.heartstats.org.
2.
Rosamond
,
W.
,
Flegal
,
K.
,
Furie
,
K.
,
Go
,
A.
,
Greenlund
,
K.
,
Haase
,
N.
,
Hailpern
,
S. M.
,
Ho
,
M.
,
Howard
,
V.
,
Kissela
,
B.
,
Kittner
,
S.
,
Lloyd-Jones
,
D.
,
McDermott
,
M.
,
Meigs
,
J.
,
Moy
,
C.
,
Nichol
,
G.
,
O’Donnell
,
C.
,
Roger
,
V.
,
Sorlie
,
P.
,
Steinberger
,
J.
,
Thom
,
T.
,
Wilson
,
M.
, and
Hong
,
Y.
, 2008, “
Heart Disease and Stroke Statistics—2008 Update
,” American Heart Association Statistics Committee, and Stroke Statistics Subcommittee, Vol.
117
.
3.
Virmani
,
R.
,
Burke
,
A. P.
, and
Farb
,
A.
, 1999, “
Plaque Rupture and Plaque Erosion
,”
Thromb. Haemostasis
0340-6245,
82
, pp.
1
3
.
4.
Davies
,
M. J.
, 2000, “
The Pathophysiology of Acute Coronary Syndromes
,”
Heart
1355-6037,
83
, pp.
361
366
.
5.
Casscells
,
W.
,
Naghavi
,
M.
, and
Willerson
,
J. T.
, 2003, “
Vulnerable Atherosclerotic Plaque: A Multifocal Disease
,”
Circulation
0009-7322,
107
, pp.
2072
2075
.
6.
Naghavi
,
M.
,
Libby
,
P.
,
Falk
,
E.
,
Casscells
,
S. W.
,
Litovsky
,
S.
,
Rumberger
,
J.
,
Badimon
,
J. J.
,
Stefanadis
,
C.
,
Moreno
,
P.
,
Pasterkamp
,
G.
,
Fayad
,
Z.
,
Stone
,
P. H.
,
Waxman
,
S.
,
Raggi
,
P.
,
Madjid
,
M.
,
Zarrabi
,
A.
,
Burke
,
A.
,
Yuan
,
C.
,
Fitzgerald
,
P. J.
,
Siscovick
,
D. S.
,
de Korte
,
C. L.
,
Aikawa
,
M.
,
Juhani Airaksinen
,
E.
,
Assmann
,
G.
,
Becker
,
C. R.
,
Chesebro
,
J. H.
,
Farb
,
A.
,
Galis
,
Z. S.
,
Jackson
,
C.
,
Jang
,
I. K.
,
Koenig
,
W.
,
Lodder
,
R. A.
,
March
,
K.
,
Demirovic
,
J.
,
Navab
,
M.
,
Priori
,
S. G.
,
Rekhter
,
M. D.
,
Bahr
,
R.
,
Grundy
,
S. M.
,
Mehran
,
R.
,
Colombo
,
A.
,
Boerwinkle
,
E.
,
Ballantyne
,
C.
,
Insull
,
W.
, Jr.
,
Schwartz
,
R. S.
,
Vogel
,
R.
,
Serruys
,
P. W.
,
Hansson
,
G. K.
,
Faxon
,
D. P.
,
Kaul
,
S.
,
Drexler
,
H.
,
Greenland
,
P.
,
Muller
,
J. E.
,
Virmani
,
R.
,
Ridker
,
P. M.
,
Zipes
,
D. P.
,
Shah
,
P. K.
, and
Willerson
,
J. T.
, 2003, “
From Vulnerable Plaque to Vulnerable Patient: A Call for New Definitions and Risk Assessment Strategies: Part I
,”
Circulation
0009-7322,
108
, pp.
1664
1672
.
7.
Falk
,
E.
, 1989, “
Morphologic Features of Unstable Atherothrombotic Plaques Underlying Acute Coronary Syndromes
,”
Am. J. Cardiol.
0002-9149,
63
, pp.
114E
120E
.
8.
Davies
,
M. J.
,
Richardson
,
P. D.
,
Woolf
,
N.
,
Katz
,
D. R.
, and
Mann
,
J.
, 1993, “
Risk of Thrombosis in Human Atherosclerotic Plaques: Role of Extracellular Lipid, Macrophage, and Smooth Muscle Cell Content
,”
Br. Heart J.
0007-0769,
69
, pp.
377
381
.
9.
Moreno
,
P.
,
Falk
,
E.
,
Palacios
,
I.
,
Newell
,
J. B.
,
Fuster
,
V.
, and
Fallon
,
J. T.
, 1994, “
Macrophage Infiltration in Acute Coronary Syndromes. Implications for Plaque Rupture
,”
Circulation
0009-7322,
90
, pp.
2775
778
.
10.
Fayad
,
Z. A.
, and
Fuster
,
V.
, 2001, “
Clinical Imaging of the High-Risk or Vulnerable Atherosclerotic Plaque
,”
Circ. Res.
0009-7330,
89
, pp.
305
316
.
11.
Yuan
,
C.
,
Mitsumori
,
L. M.
,
Beach
,
K. W.
, and
Maravilla
,
K. R.
, 2001, “
Carotid Atherosclerotic Plaque: Noninvasive MR Characterization and Identification of Vulnerable Lesions
,”
Radiology
0033-8419,
221
, pp.
285
299
.
12.
Yuan
,
C.
,
Mitsumori
,
L. M.
,
Ferguson
,
M. S.
,
Polissar
,
N. L.
,
Echelard
,
D.
,
Ortiz
,
G.
,
Small
,
R.
,
Davies
,
J. W.
,
Kerwin
,
W. S.
, and
Hatsukami
,
T. S.
, 2001, “
In Vivo Accuracy of Multispectral Magnetic Resonance Imaging for Identifying Lipid-Rich Necrotic Cores and Intraplaque Hemorrhage in Advanced Human Carotid Plaques
,”
Circulation
0009-7322,
104
, pp.
2051
2056
.
13.
Trivedi
,
R. A.
,
U-King-Im
,
J.
,
Graves
,
M. J.
,
Horsley
,
J.
,
Goddard
,
M.
,
Kirkpatrick
,
P. J.
, and
Gillard
,
J. H.
, 2004, “
Multi-Sequence In Vivo MRI Can Quantify Fibrous Cap and Lipid Core Components in Human Carotid Atherosclerotic Plaques
,”
Eur. J. Vasc. Endovasc Surg.
1078-5884,
28
, pp.
207
213
.
14.
Richardson
,
P. D.
,
Davies
,
M. J.
, and
Born
,
G. V. R.
, 1989, “
Influence of Plaque Configuration and Stress Distribution on Fissuring of Coronary Atherosclerotic Plaques
,”
Lancet
0140-6736,
334
, pp.
941
944
.
15.
Loree
,
H. M.
,
Kamm
,
R. D.
,
Stringfellow
,
R. G.
, and
Lee
,
R. T.
, 1992, “
Effects of Fibrous Cap Thickness on Peak Circumferential Stress in Model Atherosclerotic Vessels
,”
Circ. Res.
0009-7330,
71
, pp.
850
858
.
16.
Cheng
,
G. C.
,
Loree
,
H. M.
,
Kamm
,
R. D.
,
Fishbein
,
M. C.
, and
Lee
,
R. T.
, 1993, “
Distribution of Circumferential Stress in Ruptured and Stable Atherosclerotic Lesions: A Structural Analysis With Histopathological Correlation
,”
Circulation
0009-7322,
87
, pp.
1179
1187
.
17.
Burke
,
A. P.
,
Farb
,
A.
,
Malcom
,
G. T.
,
Liang
,
Y. H.
,
Smialek
,
J.
, and
Virmani
,
R.
, 1997, “
Coronary Risk Factors and Plaque Morphology in Men With Coronary Disease Who Died Suddenly
,”
N. Engl. J. Med.
0028-4793,
336
(
18
), pp.
1276
1282
.
18.
Lee
,
R. T.
,
Schoen
,
F. J.
,
Loree
,
H. M.
,
Lark
,
M. W.
, and
Libby
,
P.
, 1996, “
Circumferential Stress and Matrix Metalloproteinase 1 in Human Coronary Atherosclerosis. Implications for Plaque Rupture
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
16
, pp.
1070
1073
.
19.
Huang
,
H.
,
Virmani
,
R.
,
Younis
,
H.
,
Burke
,
A. P.
,
Kamm
,
R. D.
, and
Lee
,
R. T.
, 2001, “
The Impact of Calcification Upon the Biomechanical Stability of Atherosclerotic Plaques
,”
Circulation
0009-7322,
103
, pp.
1051
1056
.
20.
Baldewsing
,
R. A.
,
de Korte
,
C. L.
,
Schaar
,
J. A.
,
Mastik
,
F.
, and
van der Steen
,
A. F.
, 2004, “
Finite Element Modeling and Intravascular Ultrasound Elastography of Vulnerable Plaques: Parameter Variation
,”
Ultrasonics
0041-624X,
42
, pp.
723
729
.
21.
Zheng
,
J.
,
El Naqa
,
I.
,
Rowold
,
F. E.
,
Pilgram
,
T. K.
,
Woodard
,
P. K.
,
Saffitz
,
J. E.
, and
Tang
,
D.
, 2005, “
Quantitative Assessment of Coronary Artery Plaque Vulnerability by High-Resolution Magnetic Resonance Imaging and Computational Biomechanics: A Pilot Study Ex Vivo
,”
Magn. Reson. Med.
0740-3194,
54
, pp.
1360
1368
.
22.
Li
,
Z. Y.
,
Howarth
,
S. P.
,
Trivedi
,
R. A.
,
U-King-Im
,
J. M.
,
Graves
,
M. J.
,
Brown
,
A.
,
Wang
,
L.
, and
Gillard
,
J. H.
, 2006, “
Stress Analysis of Carotid Plaque Rupture Based on In Vivo High Resolution MRI
,”
J. Biomech.
0021-9290,
39
, pp.
2611
2622
.
23.
Versluis
,
A.
,
Bank
,
A. J.
, and
Douglas
,
W. H.
, 2006, “
Fatigue and Plaque Rupture in Myocardial Infarction
,”
J. Biomech.
0021-9290,
39
, pp.
339
347
.
24.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Saffitz
,
J. E.
,
Sicard
,
G. A.
,
Pilgram
,
T. K.
, and
Yuan
,
C.
, 2005, “
Quantifying Effects of Plaque Structure and Material Properties on Stress Distributions in Human Atherosclerotic Plaques Using 3D FSI Models
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
1185
1194
.
25.
Li
,
Z. Y.
,
Howarth
,
S. P.
,
Tang
,
T.
, and
Gillard
,
J. H.
, 2006, “
How Critical Is Fibrous Cap Thickness to Carotid Plaque Stability? A Flow-Plaque Interaction Model
,”
Stroke
0039-2499,
37
, pp.
1195
1199
.
26.
Schulze-Bauer
,
C. A. J.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
, 2002, “
Mechanics of the Human Femoral Adventitia Including High-Pressure Response
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
282
, pp.
H2427
H2440
.
27.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Gasser
,
C. T.
, and
Regitnig
,
P.
, 2005, “
Determination of the Layer-Specific Mechanical Properties of Human Coronary Arteries With Non-Atherosclerotic Intimal Thickening, and Related Constitutive Modelling
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
289
, pp.
H2048
H2058
.
28.
Holzapfel
,
G. A.
,
Schulze-Bauer
,
C. A. J.
, and
Stadler
,
M.
, 2000, “
Mechanics of Angioplasty: Wall, Balloon and Stent
,”
Mechanics in Biology
,
J.
Casey
and
G.
Bao
, eds.,
American Society of Mechanical Engineers (ASME)
,
New York
, AMD-Vol. 242/BED-Vol. 46, pp.
141
156
.
29.
Holzapfel
,
G. A.
,
Sommer
,
G.
, and
Regitnig
,
P.
, 2004, “
Anisotropic Mechanical Properties of Tissue Components in Human Atherosclerotic Plaques
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
657
665
.
30.
Holzapfel
,
G. A.
,
Stadler
,
M.
, and
Schulze-Bauer
,
C. A. J.
, 2002, “
A Layer-Specific Three-Dimensional Model for the Simulation of Balloon Angioplasty Using Magnetic Resonance Imaging and Mechanical Testing
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
753
767
.
31.
Beaussier
,
H.
,
Masson
,
I.
,
Collin
,
C.
,
Bozec
,
E.
,
Laloux
,
B.
,
Calvet
,
D.
,
Zidi
,
M.
,
Boutouyrie
,
P.
, and
Laurent
,
St.
, 2008, “
Carotid Plaque, Arterial Stiffness Gradient, and Remodeling in Hypertension
,”
Hypertension
0194-911X,
52
, pp.
729
736
.
32.
Davies
,
M. J.
, 2001, “
Going From Immutable to Mutable Atherosclerotic Plaques
,”
Am. J. Cardiol.
0002-9149,
88
, pp.
2F
9F
.
33.
Fuster
,
V.
,
Moreno
,
P. R.
,
Fayad
,
Z. A.
,
Corti
,
R.
, and
Badimon
,
J. J.
, 2005, “
Atherothrombosis and High–Risk Plaque: Part I: Evolving Concepts
,”
J. Am. Coll. Cardiol.
0735-1097,
46
, pp.
937
954
.
34.
Sommer
,
G.
,
Regitnig
,
P.
,
Koeltringer
,
L.
, and
Holzapfel
,
G. A.
, 2009, “
Biaxial Mechanical Properties of Intact and Layer-Dissected Human Carotid Arteries at Physiological and Supra-Physiological Loadings
,” submitted.
35.
Stary
,
H. C.
, 2003,
Atlas of Atherosclerosis: Progression and Regression
, 2nd ed.,
The Parthenon
,
Boca Raton, FL
.
36.
Auer
,
M.
,
Stollberger
,
R.
,
Regitnig
,
P.
,
Ebner
,
F.
, and
Holzapfel
,
G. A.
, 2006, “
3-D Reconstruction of Tissue Components for Atherosclerotic Human Arteries Based on High-Resolution MRI
,”
IEEE Trans. Med. Imaging
0278-0062,
25
, pp.
345
357
.
37.
Piegel
,
L. A.
, and
Tiller
,
W.
, 1997,
The NURBS Book
, 2nd ed.,
Springer-Verlag
,
New York
.
38.
R. McNeel and Associates
, 2005, “
Rhinoceros—NURBS Modeling for Windows, Version 3.0 User’s Guide
,” Seattle, WA.
39.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics. Cells, Tissues, and Organs
,
Springer-Verlag
,
New York
.
40.
G. A.
Holzapfel
, and
R. W.
Ogden
, eds., 2006,
Mechanics of Biological Tissue
,
Springer-Verlag
,
Heidelberg
.
41.
G. A.
Holzapfel
, and
R. W.
Ogden
, eds., 2009,
Biomechanical Modelling at the Molecular, Cellular and Tissue Levels
,
Springer-Verlag
,
Wien, NY
.
42.
Holzapfel
,
G. A.
,
Stadler
,
M.
, and
Gasser
,
T. C.
, 2005, “
Changes in the Mechanical Environment of Stenotic Arteries During Interaction With Stents: Computational Assessment of Parametric Stent Design
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
166
180
.
43.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
0374-3535,
61
, pp.
1
48
.
44.
Holzapfel
,
G. A.
, and
Gasser
,
T. C.
, 2001, “
A Viscoelastic Model for Fiber-Reinforced Composites at Finite Strains
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
4379
4403
.
45.
Holzapfel
,
G. A.
, and
Weizsäcker
,
H. W.
, 1998, “
Biomechanical Behavior of the Arterial Wall and Its Numerical Characterization
,”
Comput. Biol. Med.
0010-4825,
28
, pp.
377
392
.
46.
Gundiah
,
N.
,
Ratcliffe
,
M. B.
, and
Pruitt
,
L. A.
, 2007, “
Determination of Strain Energy Function for Arterial Elastin: Experiments Using Histology and Mechanical Tests
,”
J. Biomech.
0021-9290,
40
, pp.
586
594
.
47.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics. A Continuum Approach for Engineering
,
Wiley
,
Chichester, West Sussex, UK
.
48.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2004, “
Comparison of a Multi-Layer Structural Model for Arterial Walls With a Fung-Type Model, and Issues of Material Stability
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
264
275
.
49.
Demiray
,
H.
, 1972, “
A Note on the Elasticity of Soft Biological Tissues
,”
J. Biomech.
0021-9290,
5
, pp.
309
311
.
50.
Kiousis
,
D. E.
,
Gasser
,
T. C.
, and
Holzapfel
,
G. A.
, 2007, “
A Numerical Model to Study the Interaction of Vascular Stents With Human Atherosclerotic Lesions
,”
Ann. Biomed. Eng.
0090-6964,
35
, pp.
1857
1869
.
51.
CUBIT Team
, 2005, “
CUBIT 10.0 User’s Manual
,” Sandia National Laboratories, Albuquerque, NM.
52.
Taylor
,
R. L.
, 2005, “
FEAP—A Finite Element Analysis Program, Version 7.5 User Manual
,” University of California at Berkeley, Berkeley, CA.
53.
Schulze-Bauer
,
C. A. J.
,
Mörth
,
C.
, and
Holzapfel
,
G. A.
, 2003, “
Passive Biaxial Mechanical Response of Aged Human Iliac Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
395
406
.
54.
Fridez
,
P.
,
Zulliger
,
M.
,
Bobard
,
F.
,
Montorzi
,
G.
,
Miyazaki
,
H.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
, 2003, “
Geometrical, Functional, and Histomorphometric Adaptation of Rat Carotid Artery in Induced Hypertension
,”
J. Biomech.
0021-9290,
36
, pp.
671
680
.
55.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Saffitz
,
J. E.
,
Petruccelli
,
J. D.
,
Sicard
,
G. A.
, and
Yuan
,
C.
, 2005, “
Local Maximal Stress Hypothesis and Computational Plaque Vulnerability Index for Atherosclerotic Plaque Assessment
,”
Ann. Biomed. Eng.
0090-6964,
33
, pp.
1789
1801
.
56.
Finet
,
G.
,
Ohayon
,
J.
,
Rioufol
,
G.
,
Lefloch
,
S.
,
Tracqui
,
P.
,
Dubreuil
,
O.
, and
Tabib
,
A.
, 2007, “
Morphological and Biomechanical Aspects of Vulnerable Coronary Plaque
,”
Arch. Mal Coeur Vaiss
0003-9683,
100
, pp.
547
553
.
57.
Holzapfel
,
G. A.
, 2008, “
Collagen in Arterial Walls: Biomechanical Aspects
,”
Collagen. Structure and Mechanics
,
P.
Fratzl
, ed.,
Springer-Verlag
,
Heidelberg
, pp.
285
324
.
58.
Karajan
,
N.
,
Ehlers
,
W.
,
Markert
,
B.
,
Acartürk
,
A.
, and
Wieners
,
C.
, 2005, “
FE Treatment of Inhomogeneities Within the Intervertebral Disc
,”
Appl. Math. Mech.
0253-4827,
5
, pp.
237
238
.
59.
Gasser
,
T. C.
, and
Holzapfel
,
G. A.
, 2007, “
Modeling Plaque Fissuring and Dissection During Balloon Angioplasty Intervention
,”
Ann. Biomed. Eng.
0090-6964,
35
, pp.
711
723
.
60.
Chobanian
,
A. V.
,
Bakris
,
G. L.
,
Black
,
H. R.
,
Cushman
,
W. C.
,
Green
,
L. A.
,
Izzo
,
J. L.
,
Jones
,
D. W.
,
Materson
,
B. J.
,
Oparil
,
S.
,
Wright
,
J. T.
, and
Roccella
,
E. J.
, 2003, “
The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure
,”
JAMA, J. Am. Med. Assoc.
0098-7484,
289
, pp.
2560
2572
.
61.
Franklin
,
S. S.
,
Larson
,
M. G.
,
Khan
,
S. A.
,
Wong
,
N. D.
,
Leip
,
E. P.
,
Kannel
,
W. B.
, and
Levy
,
D.
, 2001, “
Does the Relation of Blood Pressure to Coronary Heart Disease Risk Change With Aging? The Framingham Heart Study
,”
Circulation
0009-7322,
103
, pp.
1245
1249
.
62.
Bhatt
,
D. L.
,
Steg
,
P. G.
,
Ohman
,
E. M.
,
Hirsch
,
A. T.
,
Ikeda
,
Y.
,
Mas
,
J. L.
,
Goto
,
S.
,
Liau
,
C. S.
,
Richard
,
A. J.
,
Röther
,
J.
, and
Wilson
,
P. W.
, and
REACH Registry Investigators
, 2006, “
International Prevalence, Recognition, and Treatment of Cardiovascular Risk Factors in Outpatients With Atherothrombosis
,”
JAMA, J. Am. Med. Assoc.
0098-7484,
295
, pp.
180
189
.
63.
Ohman
,
E. M.
,
Bhatt
,
D. L.
,
Steg
,
P. G.
,
Goto
,
S.
,
Hirsch
,
A. T.
,
Liau
,
C. S.
,
Mas
,
J. L.
,
Richard
,
A. J.
,
Röther
,
J.
,
Wilson
,
P. W.
, and
REACH Registry Investigators
, 2006, “
The REduction of Atherothrombosis for Continued Health (REACH) Registry: An International, Prospective, Observational Investigation in Subjects at Risk for Atherothrombotic Events-Study Design
,”
Am. Heart J.
0002-8703,
151
, pp.
786.e1
786.e10
.
64.
Kaazempur-Mofrad
,
M. R.
,
Isasi
,
A. G.
,
Younis
,
H. F.
,
Chan
,
R. C.
,
Hinton
,
D. P.
,
Sukhova
,
G.
,
LaMuraglia
,
G. M.
,
Lee
,
R. T.
, and
Kamm
,
R. D.
, 2004, “
Characterization of the Atherosclerotic Carotid Bifurcation Using MRI, Finite Element Modeling, and Histology
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
932
946
.
65.
Toussaint
,
J. F.
,
LaMuraglia
,
G. M.
,
Southern
,
J. F.
,
Fuster
,
V.
, and
Kantor
,
H. L.
, 1996, “
Magnetic Resonance Images Lipid, Fibrous, Calcified, Hemorrhagic, and Thrombotic Components of Human Atherosclerosis In Vivo
,”
Circulation
0009-7322,
94
, pp.
932
938
.
66.
Shinnar
,
M.
,
Fallon
,
J. T.
,
Wehrli
,
S.
,
Levin
,
M.
,
Dalmacy
,
D.
,
Fayad
,
Z. A.
,
Badimon
,
J. J.
,
Harrington
,
M.
,
Harrington
,
E.
, and
Fuster
,
V.
, 1999, “
The Diagnostic Accuracy of Ex Vivo MRI for Human Atherosclerotic Plaque Characterization
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
19
, pp.
2756
2761
.
67.
Hatsukami
,
T. S.
,
Ross
,
R.
, and
Yuan
,
C.
, 2000, “
Visualization of Fibrous Cap Thickness and Rupture in Human Atherosclerotic Carotid Plaque In-Vivo With High Resolution Magnetic Resonance Imaging
,”
Circulation
0009-7322,
102
, pp.
959
964
.
68.
Rogers
,
W. J.
,
Prichard
,
J. W.
,
Hu
,
Y. L.
,
Olson
,
P. R.
,
Benckart
,
D. H.
,
Kramer
,
C. M.
,
Vido
,
D. A.
, and
Reichek
,
N.
, 2000, “
Characterization of Signal Properties in Atherosclerotic Plaque Components by Intravascular MRI
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
20
, pp.
1824
1830
.
You do not currently have access to this content.