Flow analysis at microvascular bifurcation after partial replacement of red blood cell (RBC) with liposome-encapsulated hemoglobin (LEH) was performed using the lattice Boltzmann method. A two-dimensional symmetric Y bifurcation model with a parent vessel diameter of 20μm and daughter branch diameters of 20μm was considered, and the distributions of the RBC, LEH, and oxygen fluxes were calculated. When only RBCs flow into the daughter branches with unevenly distributed flows, plasma separation occurred and the RBC flow to the lower-flow branch was disproportionately decreased. On the other hand, when half of RBC are replaced by LEH, the biasing of RBC flow was enhanced whereas LEH flowed favorably into the lower-flow branch, because many LEH within the parent vessel are suspended in the plasma layer, where no RBCs exist. Consequently, the branched oxygen fluxes became nearly proportional to flows. These results indicate that LEH facilitates oxygen supply to branches that are inaccessible to RBCs.

1.
Chang
,
T. M. S.
, 2003, “
Future Generations of Red Blood Cell Substitutes
,”
Intern Med.
0918-2918,
253
, pp.
527
535
.
2.
Kjellstrom
,
B. T.
, 2003, “
Blood Substitutes: Where Do We Stand Today?
,”
Intern Med.
0918-2918,
253
, pp.
495
497
.
3.
Squires
,
J. E.
, 2002, “
Artificial Blood
,”
Science
0036-8075,
295
, pp.
1002
1005
.
4.
Winslow
,
R. M.
, 2003, “
Current Status of Blood Substitute Research: Towards a New Paradigm
,”
Intern Med.
0918-2918,
253
, pp.
508
517
.
5.
Sakai
,
H.
,
Hara
,
H.
,
Yuasa
,
M.
,
Tsai
,
A. G.
,
Takeoka
,
S.
,
Tsuchida
,
E.
, and
Intaglietta
,
M.
, 2000, “
Molecular Dimensions of Hb-Based O2 Carriers Determine Constriction of Resistance Arteries and Hypertension
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
279
, pp.
908
915
.
6.
Sakai
,
H.
,
Takeoka
,
S.
,
Wettstein
,
R.
,
Tsai
,
A. G.
,
Intaglietta
,
M.
, and
Tsuchida
,
E.
, 2002, “
Systemic and Microvascular Responses to Hemorrhagic Shock and Resuscitation With Hb Vesicles
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
283
, pp.
1191
1199
.
7.
Matsumoto
,
T.
,
Asano
,
T.
,
Mano
,
K.
,
Tachibana
,
H.
,
Todoh
,
M.
,
Tanaka
,
M.
, and
Kajiya
,
F.
, 2005, “
Regional Myocardial Perfusion Under Exchange Transfusion With Liposomal Hemoglobin: In Vivo and In Vitro Studies Using Rat Hearts
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
288
, pp.
H1909
H1914
.
8.
Rudolph
,
A. S.
,
Klipper
,
R. W.
,
Goins
,
B.
, and
Phillips
,
W. T.
, 1991, “
In Vivo Biodistribution of a Radiolabeled Blood Substitute: Tc99m-Labeled Liposome-Encapsulated Hemoglobin in an Anesthetized Rabbit
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
88
, pp.
10976
10980
.
9.
Chien
,
S.
,
Tvetenstrand
,
C. D.
,
Epstein
,
M. A. F.
, and
Schmid-Schonbein
,
G. W.
, 1985, “
Model Studies on Distributions of Blood Cells at Microvascular Bifurcations
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
248
, pp.
568
576
.
10.
Pries
,
A. R.
,
Secomb
,
T. W.
,
Gaehtgens
,
P.
, and
Gross
,
J. F.
, 1990, “
Blood Flow in Microvascular Networks: Experiments and Simulation
,”
Circ. Res.
0009-7330,
67
(
4
), pp.
826
834
.
11.
McNamara
,
G.
, and
Zanetti
,
G.
, 1998, “
Use of the Boltzmann Equation to Simulate Lattice-Gas Automata
,”
Phys. Rev. Lett.
0031-9007,
61
, pp.
2332
2335
.
12.
Succi
,
S.
, 2001,
The Lattice Boltzmann Equation
,
Oxford
,
New York
.
13.
Tsutahara
,
M.
,
Takada
,
N.
, and
Kataoka
,
T.
, 1999,
Lattice Gas and Lattice Boltzmann Methods
,
Corona Publishing Co., LTD.
,
Tokyo, Japan
.
14.
Qian
,
T. H.
,
d’Humiéres
,
D.
, and
Lallemand
,
P.
, 1992, “
Lattice BGK Models for Navier–Stokes Equation
,”
Europhys. Lett.
0295-5075,
17
, pp.
479
484
.
15.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
, 1954, “
A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems
,”
Phys. Rev.
0031-899X,
94
, pp.
511
525
.
16.
Inamuro
,
T.
,
Yoshino
,
M.
, and
Ogino
,
F.
, 1995, “
A Non-Slip Boundary Condition for Lattice Boltzmann Simulations (Erratum: 8, 1124)
,”
Phys. Fluids
1070-6631,
7
, pp.
2928
2930
.
17.
Inamuro
,
T.
,
Maeba
,
K.
, and
Ogino
,
F.
, 2000, “
Flow Between Parallel Walls Containing the Lines of Neutrally Buoyant Circular Cylinders
,”
Int. J. Multiphase Flow
0301-9322,
26
, pp.
1981
2004
.
18.
Lamb
,
H.
, 1932,
Hydrodynamics
, 6th ed.,
Cambridge University Press
,
Cambridge
.
19.
Hyakutake
,
T.
,
Matsumoto
,
T.
, and
Yanase
,
S.
, 2006, “
Numerical Simulations of Circular Particles in Parallel Plate Channel Flow Using Lattice Boltzmann Method
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
0387-5016,
72
(
718
), pp.
1434
1441
.
20.
Tanaka
,
T.
, and
Tsuji
,
Y.
, 1991, “
Numerical Simulation of Gas-Solid Two-Phase Flow in a Vertical Pipe: On the Effect of Inter-Particle Collision
,”
FED (Am. Soc. Mech. Eng.)
0888-8116,
121
, pp.
123
128
.
21.
Goldsmith
,
H. L.
, 1986, “
The Microrheology of Human Blood
,”
Microvasc. Res.
0026-2862,
31
, pp.
121
142
.
22.
Hyakutake
,
T.
,
Matsumoto
,
T.
, and
Yanase
,
S.
, 2006, “
Lattice Boltzmann Simulation of Blood Cell Behavior at Microvascular Bifurcations
,”
Math. Comput. Simul.
0378-4754,
72
(
2–6
), pp.
134
140
.
23.
Maeda
,
N.
, 1996, “
Erythrocyte Rheology in Microcircu1ation
,”
Jpn. J. Physiol.
0021-521X,
46
, pp.
1
14
.
24.
Boryczko
,
K.
,
Dzwinel
,
W.
, and
Yuen
,
D. A.
, 2003, “
Dynamical Clustering of Red Blood Cells in Capillary Vessels
,”
J. Mol. Model.
0948-5023,
9
(
1
), pp.
16
33
.
25.
Eggleton
,
C. D.
, and
Popel
,
A. S.
, 1998, “
Large Deformation of Red Blood Cell Ghosts in a Simple Shear Flow
,”
Phys. Fluids
1070-6631,
10
(
8
), pp.
1834
1845
.
26.
Pozrikidis
,
C.
, 2003, “
Numerical Simulation of the Flow-Induced Deformation of Red Blood Cells
,”
Ann. Biomed. Eng.
0090-6964,
31
(
10
), pp.
1194
1205
.
27.
Sugihara-Seki
,
M.
, and
Fu
,
B. M.
, 2005, “
Blood Flow and Permeability in Microvessels
,”
Fluid Dyn. Res.
0169-5983,
37
(
1–2
), pp.
82
132
.
28.
Takano
,
T.
,
Tanaka
,
N.
, and
Masuzawa
,
T.
, 2004, “
Micro-Simulation of Blood Flow
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
0387-5016,
70
(
699
), pp.
2705
2711
.
29.
Tsubota
,
K.
,
Wada
,
S.
, and
Yamaguchi
,
T.
, 2006, “
Particle Method for Computer Simulation of Red Blood Cell Motion in Blood Flow
,”
Comput. Methods Programs Biomed.
0169-2607,
83
, pp.
139
146
.
You do not currently have access to this content.