In this paper, the mechanical properties of erythrocytes were studied numerically based upon the mechanical model originally developed by Pamplona and Calladine (ASME J. Biomech. Eng., 115, p. 149, 1993) for liposomes. The case under study is the erythrocyte stretched by a pair of laser beams in opposite directions within buffer solutions. The study aims to elucidate the effect of radiation pressure from the optical laser because up to now little is known about its influence on the cell deformation. Following an earlier study by Guck et al. (Phys. Rev. Lett., 84, p. 5451, 2000; Biophys. J., 81, p. 767, 2001), the empirical results of the radiation pressure were introduced and imposed on the cell surface to simulate the real experimental situation. In addition, an algorithm is specially designed to implement the simulation. For better understanding of the radiation pressure on the cell deformation, a large number of simulations were conducted for different properties of cell membrane. Results are first discussed parametrically and then evaluated by comparing with the experimental data reported by Guck et al. An optimization approach through minimizing the errors between experimental and numerical data is used to determine the optimal values of membrane properties. The results showed that an average shear stiffness around 4.611×10-6Nm1, when the nondimensional ratio of shear modulus to bending modulus ranges from 10 to 300. These values are in a good agreement with those reported in literature.

1.
Waugh
,
R. E.
,
Song
,
J.
,
Svetina
,
S.
, and
Zeks
,
B.
, 1992, “
Local and Nonlocal Curvature Elasticity in Bilayer Membranes by Tether Formation From Lecithin Vesicles
,”
Biophys. J.
0006-3495,
61
, pp.
974
982
.
2.
Skalak
,
R.
,
Tozeren
,
A.
,
Zarda
,
R. P.
, and
Chien
,
S.
, 1973, “
Strain Energy Function of Red Blood Membranes
,”
Biophys. J.
0006-3495,
13
, pp.
245
264
.
3.
Skalak
,
R.
, 1973, “
Modelling the Mechanical Behavior of Red Blood Cells
,”
Biorheology
0006-355X,
10
, pp.
229
238
.
4.
Pozrikidis
,
C.
, 2003,
Modelling and Simulation of Capsules and Biological Cells
,
Chapman & Hall / CRC Press
, New York, Chaps. 1 and 2.
5.
Pamplona
,
D. C.
, and
Calladine
,
C. R.
, 1993, “
The Mechanics of Axially Symmetric Liposomes
,”
ASME J. Biomech. Eng.
0148-0731,
115
, pp.
149
159
.
6.
Pamplona
,
D. C.
, and
Calladine
,
C. R.
, 1996, “
Aspects of the Mechanics of Lobed Lipsomes
,”
ASME J. Biomech. Eng.
0148-0731,
118
, pp.
482
488
.
7.
Parker
,
K. H.
, and
Winlove
,
C. P.
, 1999, “
The Deformation of Spherical Vesicles With Permeable, Constant-Area Membranes: Application to the Red Blood Cell
,”
Biophys. J.
0006-3495,
77
, pp.
3096
3107
.
8.
Sleep
,
J. A.
,
Wilson
,
D.
,
Simmons
,
R. M.
, and
Gratzer
,
W. B.
, 1999, “
Elasticity of the Red Cell Membrane and Its Relation to Hemolytic Disorders: An Optical Tweezers Study
,”
Biophys. J.
0006-3495,
77
, pp.
3085
3095
.
9.
Guck
,
J.
,
Ananthakrishnan
,
R.
,
Moon
,
T. J.
,
Cunningham
,
C. C.
, and
Kas
,
J.
, 2000, “
Optical Deformability of Soft Biological Dielectrics
,”
Phys. Rev. Lett.
0031-9007,
84
, pp.
5451
5454
.
10.
Guck
,
J.
,
Ananthakrishnan
,
R.
,
Moon
,
T. J.
,
Cunningham
,
C. C.
, and
Kas
,
J.
, 2001, “
The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells
,”
Biophys. J.
0006-3495,
81
, pp.
767
784
.
11.
Hansen
,
J. C.
,
Skalak
,
R.
,
Chien
,
S.
, and
Hoger
,
A.
, 1996, “
An Elastic Network Model Based on the Structure of the Red Blood Cell Membrane Skeleton
,”
Biophys. J.
0006-3495,
70
, pp.
146
166
.
12.
Flugge
,
W.
, 1973,
Stresses in Shells
, 2nd. ed.,
Springer-Verlag
, Berlin, p.
324
.
13.
Ugural
,
A. C.
, 1998,
Stresses in Plates and Shells
, 2nd. ed.,
McGraw-Hill
, New York, p.
395
.
14.
Timoshenko
,
S. P.
, and
Woinowsky-Krieger
,
S.
, 1959,
Theory of Plates and Shells
, 2nd. ed.,
McGraw-Hill
, New York, p.
320
.
15.
Hecht
,
E.
, 2001,
Optics
, 4th ed.,
Addison Wesley
, New York, Chap. 2.
16.
Hulst
,
H. C.
, 1957,
Light Scattering by Small Particles
,
Dover
, New York, pp.
224
226
.
17.
Bakker Schut
,
T. C.
,
Hesselink
,
G.
,
Grroth
,
B. G.
, and
Greve
,
J.
, 1991, “
Experimental and Theoretical Investigations on the Validity of the Geometrical Optics Model for Calculating the Stability of Optical Traps
,”
Cytometry
0196-4763,
12
, pp.
479
485
.
18.
Nemoto
,
S.
, and
Togo
,
H.
, 1998, “
Axial Force Acting on a Dielectric Sphere in a Focused Laser Beam
,”
Appl. Opt.
0003-6935,
37
(
27
), pp.
6386
6394
.
19.
Sandford
,
M. R.
, and
Shipman
,
J. S.
, 1972,
Two-Point Boundary Value Problems: Shooting Methods
,
American Elsevier
, New York.
20.
Chang
,
K. S.
, and
Olbricht
,
W. L.
, 1993, “
Experimental Studies of the Deformation of a Synthetic Capsule in Extensional Flow
,”
J. Fluid Mech.
0022-1120,
250
, pp.
587
608
.
21.
De Hass
,
K. H.
,
Blom
,
C.
,
van den Ende
,
D.
,
Duits
,
M. H. G.
, and
Mellema
,
J.
, 1997, “
Deformation of Giant Lipid Bilayer Vesicles in Shear Flow
,”
Phys. Rev. E
1063-651X,
56
(
6
), pp.
7132
7137
.
22.
Lenormand
,
G.
,
Hénon
,
S.
,
Richert
,
A.
,
Siméon
,
J.
, and
Gallet
,
F.
, 2001, “
Direct Measurement of the Area Expansion and Shear Moduli of the Human Red Blood Cell Membrane Skeleton
,”
Biophys. J.
0006-3495,
81
, pp.
43
56
.
23.
Waugh
,
R.
, and
Evans
,
E. A.
, 1979, “
Thermoelasticity of Red Blood Cell Membrane
,”
Biophys. J.
0006-3495,
26
, pp.
115
132
.
24.
Lee
,
J. C.-M.
, and
Discher
,
D.
, 2001, “
Deformation-Enhanced Fluctuations in the Red Cell Skeleton With Theoretical Relations to Elasticity, Connectivity, and Spectrin Unfolding
,”
Biophys. J.
0006-3495,
81
, pp.
3178
3192
.
25.
Hochmuth
,
R. M.
, and
Waugh
,
R. E.
, 1987, “
Erythrocyte Membrane Elasticity and Viscosity
,”
Annu. Rev. Physiol.
0066-4278,
49
, pp.
209
219
.
26.
Lelievre
,
J. C.
,
Bucherer
,
C.
,
Geiger
,
S.
,
Lacombe
,
C.
, and
Vereycken
,
V.
, 1995, “
Blood Cell Biomechanics Evaluated by the Single-Cell Micromanipulation
,”
J. Phys. III
1155-4320,
5
, pp.
1689
1706
.
You do not currently have access to this content.