The microstructure of tissues and tissue equivalents (TEs) plays a critical role in determining the mechanical properties thereof. One of the key challenges in constitutive modeling of TEs is incorporating the kinematics at both the macroscopic and the microscopic scale. Models of fibrous microstructure commonly assume fibrils to move homogeneously, that is affine with the macroscopic deformation. While intuitive for situations of fibril-matrix load transfer, the relevance of the affine assumption is less clear when primary load transfer is from fibril to fibril. The microstructure of TEs is a hydrated network of collagen fibrils, making its microstructural kinematics an open question. Numerical simulation of uniaxial extensile behavior in planar TE networks was performed with fibril kinematics dictated by the network model and by the affine model. The average fibril orientation evolved similarly with strain for both models. The individual fibril kinematics, however, were markedly different. There was no correlation between fibril strain and orientation in the network model, and fibril strains were contained by extensive reorientation. As a result, the macroscopic stress given by the network model was roughly threefold lower than the affine model. Also, the network model showed a toe region, where fibril reorientation precluded the development of significant fibril strain. We conclude that network fibril kinematics are not governed by affine principles, an important consideration in the understanding of tissue and TE mechanics, especially when load bearing is primarily by an interconnected fibril network.

1.
Bell
,
E.
,
Ivarsson
,
B.
, and
Merrill
,
C.
, 1979, “
Production of a Tissue-Like Structure by Contraction of Collagen Lattices by Human Fibroblasts of Different Proliferative Potential in vivo
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
76
, pp.
1274
1278
.
2.
Tranquillo
,
R. T.
, 1999, “
Self-Organization of Tissue-Equivalents: The Nature and Role of Contact Guidance
,”
Biochem. Soc. Symp.
0067-8694,
65
, pp.
27
42
.
3.
Tranquillo
,
R. T.
,
Durrani
,
M. A.
, and
Moon
,
A. G.
, 1992, “
Tissue Engineering Science–Consequences of Cell Traction Force
,”
Cytotechnology
0920-9069,
10
, pp.
225
250
.
4.
Veis
,
A.
, 1982, “
Collagen Fibrillogenesis
,”
Connect. Tissue Res.
0300-8207,
10
, pp.
11
24
.
5.
Kadler
,
K. E.
,
Holmes
,
D. F.
,
Trotter
,
J. A.
, and
Chapman
,
J. A.
, 1996, “
Collagen Fibril Formation
,”
Biophys. J.
0006-3495,
316
, pp.
1
11
.
6.
Piez
,
K. A.
, 1982, “
Structure and Assembly of the Native Collagen Fibril
,”
Connect. Tissue Res.
0300-8207,
10
, pp.
25
36
.
7.
Suarez
,
G.
,
Oronsky
,
A. L.
,
Bordas
,
J.
, and
Koch
,
M. H.
, 1985, “
Synchrotron Radiation X-Ray Scattering in the Early Stages of In Vitro Collagen Fibril Formation
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
82
, pp.
4693
4696
.
8.
Roeder
,
B. A.
,
Kokini
,
K.
,
Surgis
,
J. E.
,
Robinson
,
J. P.
, and
Voytik-Harbin
,
S. L.
, 2002, “
Tensile Mechanical Properties of Three-Dimensional Type I Collagen Extracellular Matrices With Varied Microstructure
,”
J. Biomech. Eng.
0148-0731,
124
, pp.
214
223
.
9.
Holmes
,
D. F.
,
Graham
,
H. K.
,
Trotter
,
J. A.
, and
Kadler
,
K. E.
, 2001, “
STEM/TEM Studies of Collagen Fibril Assembly
,”
Micron
0968-4328,
32
, pp.
273
285
.
10.
Brightman
,
A. O.
,
Rajwa
,
B. P.
,
Sturgis
,
J. E.
,
McCallister
,
M. E.
,
Robinson
,
J. P.
, and
Voytik-Harbin
,
S. L.
, 2000, “
Time-Lapse Confocal Reflection Microscopy of Collagen Fibrillogenesis and Extracellular Matrix Assembly In Vitro
,”
Biopolymers
0006-3525,
54
, pp.
222
234
.
11.
Zhu
,
W.
,
Iatridis
,
J. C.
,
Hlibczuk
,
V.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
, 1996, “
Determination of Collagen–Proteoglycan Interactions In Vitro
,”
J. Biomech.
0021-9290,
29
, pp.
773
783
.
12.
Grinnell
,
F.
, and
Lamke
,
C. R.
, 1984, “
Reorganization of Hydrated Collagen Lattices by Human Skin Fibroblasts
,”
J. Cell. Sci.
0021-9533,
66
, pp.
51
63
.
13.
Tower
,
T. T.
,
Neidert
,
M. R.
, and
Tranquillo
,
R. T.
, 2002, “
Fiber Alignment Imaging During Mechanical Testing of Soft Tissues
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
1221
1233
.
14.
Feng
,
Z.
,
Yamato
,
M.
,
Akutsu
,
T.
,
Nakamura
,
T.
,
Okano
,
T.
, and
Umezu
,
M.
, 2003, “
Investigation on the Mechanical Properties of Contracted Collagen Gels as a Scaffold for Tissue Engineering
,”
Artif. Organs
0160-564X,
27
, pp.
84
91
.
15.
Ozerdem
,
B.
, and
Tozeren
,
A.
, 1995, “
Physical Response of Collagen Gels to Tensile Strain
,”
ASME J. Biomech. Eng.
0148-0731,
117
, pp.
397
401
.
16.
Chapuis
,
J. F.
, and
Agache
,
P.
, 1992, “
A New Technique to Study the Mechanical Properties of Collagen Lattices
,”
J. Biomech.
0021-9290,
25
, pp.
115
120
.
17.
Wagenseil
,
J. E.
, 2003, “
One-Dimensional Viscoelastic Behavior of Fibroblast Populated Collagen Matrices
,”
J. Biomech. Eng.
0148-0731,
125
, pp.
719
725
.
18.
Agoram
,
B.
, and
Barocas
,
V. H.
, 2001, “
Coupled Macroscopic and Microscopic Scale Modeling of Fibrillar Tissues and Tissue Equivalents
,”
J. Biomech. Eng.
0148-0731,
123
, pp.
362
369
.
19.
Sheu
,
M. T.
,
Huang
,
J. C.
,
Yeh
,
G. C.
, and
Ho
,
H. O.
, 2001, “
Characterization of Collagen Gel Solutions and Collagen Matrices for Cell Culture
,”
Biomaterials
0142-9612,
22
, pp.
1713
1719
.
20.
Osborne
,
C. S.
,
Barbenel
,
J. C.
,
Smith
,
D.
,
Savakis
,
M.
, and
Grant
,
M. H.
, 1998, “
Investigation Into the Tensile Properties of Collagen/Chondroitin-6-Sulphate Gels: The Effect of Crosslinking Agents and Diamines
,”
Med. Biol. Eng. Comput.
0140-0118,
36
, pp.
129
134
.
21.
Frisen
,
M.
,
Magi
,
M.
,
Sonnerup
,
I.
, and
Viidik
,
A.
, 1969, “
Rheological Analysis of Soft Collagenous Tissue. Part 1: Theoretical Considerations
,”
J. Biomech.
0021-9290,
2
, pp.
13
20
.
22.
Driesen
,
N. J.
,
Boerboom
,
R. A.
,
Huyghe
,
J. M.
,
Bouten
,
C. V.
, and
Baaijens
,
F. P.
, 2003, “
Computational Analyses of Mechanically Induced Collagen Fiber Remodeling in the Aortic Heart Valve
,”
J. Biomech. Eng.
0148-0731,
125
, pp.
549
557
.
23.
Barocas
,
V. H.
, and
Tranquillo
,
R. T.
, 1997, “
An Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Interplay Among Cell Traction, Fibrillar Network Deformation, Fibril Alignment, and Cell Contact Guidance
,”
J. Biomech. Eng.
0148-0731,
119
, pp.
137
145
.
24.
Soulhart
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 1999, “
A Fibril-Network-Reinforced Biphasic Model of Cartilage in Unconfined Compression
,”
J. Biomech. Eng.
0148-0731,
121
, pp.
340
347
.
25.
Schwartz
,
M. H.
,
Leo
,
P. H.
, and
Lewis
,
J. L.
, 1994, “
A Microstructural Model for the Elastic Response of Articular Cartilage
,”
J. Biomech.
0021-9290,
27
, pp.
865
873
.
26.
Jain
,
M. K.
,
Chernomorsky
,
A.
,
Silver
,
F. H.
, and
Berg
,
R. A.
, 1988, “
Material Properties of Living Soft-Tissue Composites
,”
J. Biomed. Mater. Res.
0021-9304,
22
, pp.
311
326
.
27.
Farquhar
,
T.
,
Dawson
,
P. R.
, and
Torzilli
,
P. A.
, 1990, “
A Microstructural Model for the Anisotropic Drained Stiffness of Articular Cartilage
,”
J. Biomech. Eng.
0148-0731,
112
, pp.
414
425
.
28.
Lanir
,
Y.
, 1982, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
0021-9290,
18
, pp.
1
12
.
29.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 1997, “
A Method to Quantify the Fiber Kinematics of Planar Tissues Under Biaxial Stretch
,”
J. Biomech.
0021-9290,
30
, pp.
753
756
.
30.
Sawhney
,
R. K.
, and
Howard
,
J.
, 2002, “
Slow Local Movements of Collagen Fibers by Fibroblasts Drive the Rapid Global Self-Organization of Collagen Gels
,”
J. Cell Biol.
0021-9525,
157
, pp.
1083
1091
.
31.
Chandran
,
P. L.
, and
Barocas
,
V. H.
, 2004, “
Microstructural Mechanics of Collagen Gels in Confined Compression: Poroelasticity, Viscoelasticity, and Collapse
,”
J. Biomech. Eng.
0148-0731,
126
, pp.
152
166
.
32.
Harkness
,
M. L. R.
, 1959, “
Effects of Enzymes on Mechanical Properties of Tissues
,”
Nature (London)
0028-0836,
183
, pp.
1821
1822
.
33.
Eyre
,
D. R.
, and
Wu
,
J. J.
, 1995, “
Collagen Structure and Cartilage Matrix Integrity
,”
J. Rheumatol., Suppl.
0380-0903,
43
, pp.
82
85
.
34.
Riesle
,
J.
,
Hollander
,
A. P.
,
Langer
,
R.
,
Freed
,
L. E.
, and
Vunjak-Novakovic
,
G.
, 1998, “
Collagen in Tissue-Engineered Cartilage: Types, Structure, and Crosslinks
,”
J. Cell. Biochem.
0730-2312,
71
, pp.
313
327
.
35.
Brewer
,
K. K.
,
Sakai
,
H.
,
Alencar
,
A. M.
,
Majumdar
,
A.
,
Arold
,
S. P.
,
Lutchen
,
K. R.
,
Ingenito
,
E. P.
, and
Suki
,
B.
, 2003, “
Lung and Alveolar Wall Elastic and Hysteretic Behavior in Rats: Effects of In Vivo Elastase Treatment
,”
J. Appl. Physiol.
8750-7587,
95
, pp.
1926
1936
.
36.
Head
,
D. A.
,
Levine
,
A. J.
, and
MacKintosh
,
F. C.
, 2003, “
Deformation of Cross-Linked Semiflexible Polymer Networks
,”
Phys. Rev. Lett.
0031-9007,
91
, p.
108102
.
37.
Head
,
D. A.
,
Levine
,
A. J.
, and
MacKintosh
,
F. C.
, 2003, “
Distinct Regimes of Elastic Response and Deformation Modes of Cross-Linked Cytoskeletal and Semiflexible Polymer Networks
,”
Phys. Rev. E
1063-651X,
68
, p.
061907
.
38.
Silver
,
F. H.
,
Kato
,
Y. P.
,
Ohno
,
M.
, and
Wasserman
,
A. J.
, 1992, “
Analysis of Mammalian Connective Tissue: Relationship Between Hierarchical Structures and Mechanical Properties
,”
J. Long-Term Effects Med. Implants
,
2
, pp.
165
198
.
39.
Misof
,
K.
,
Rapp
,
G.
, and
Fratzl
,
P.
, 1997, “
A New Molecular Model for Collagen Elasticity Based on Synchrotron X-Ray Scattering Evidence
,”
Biophys. J.
0006-3495,
72
, pp.
1376
1381
.
40.
Fratzl
,
P.
,
Misof
,
K.
,
Zizak
,
I.
,
Rapp
,
G.
,
Amenitsch
,
H.
, and
Bernstorff
,
S.
, 1998, “
Fibrillar Structure and Mechanical Properties of Collagen
,”
J. Struct. Biol.
1047-8477,
122
, pp.
119
122
.
41.
Mosler
,
E.
,
Folkhard
,
W.
,
Knorzer
,
E.
,
Nemetschek-Gansler
,
H.
,
Nemetschek
,
T.
, and
Koch
,
M. H.
, 1985, “
Stress-Induced Molecular Rearrangement in Tendon Collagen
,”
J. Mol. Biol.
0022-2836,
182
, pp.
589
596
.
42.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part II–A Structural Constitutive Model
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
327
335
.
43.
Gentleman
,
E.
,
Lay
,
A. N.
,
Dickerson
,
D. A.
,
Nauman
,
E. A.
,
Livesay
,
G. A.
, and
Dee
,
K. C.
, 2003, “
Mechanical Characterization of Collagen Fibers and Scaffolds for Tissue Engineering
,”
Biomaterials
0142-9612,
24
, pp.
3805
3813
.
44.
Sun
,
W.
,
Sacks
,
M. S.
,
Sellaro
,
T. L.
,
Slaughter
,
W. S.
, and
Scott
,
M. J.
, 2003, “
Biaxial Mechanical Response of Bioprosthetic Heart Valve Biomaterials to High In-Plane Shear
,”
J. Biomech. Eng.
0148-0731,
125
, pp.
372
380
.
45.
Kang
,
T.
,
Humphrey
,
J. D.
, and
Yin
,
F. C.
, 1996, “
Comparison of Biaxial Mechanical Properties of Excised Endocardium and Epicardium
,”
Am. J. Physiol.
0002-9513,
270
, pp.
H2169
H2176
.
46.
Malvern
,
L. E.
, 1969,
Introduction to the Mechanics of a Continuous Medium
,
Prentice–Hall
, Englewood Cliffs, NJ.
47.
Lanir
,
Y.
, 1979, “
A Structural Theory for the Homogeneous Biaxial Stress-Strain Relationships in Flat Collagenous Tissues
,”
J. Biomech.
0021-9290,
12
, pp.
423
436
.
48.
Oda
,
M.
, and
Iwashita
,
K.
, 1999,
Mechanics of Granular Materials: An Introduction
,
Balkema
, Rotterdam.
49.
Hollister
,
S. J.
,
Brennan
,
J. M.
, and
Kikuchi
,
N.
, 1994, “
A Homogenization Sampling Procedure for Calculating Trabecular Bone Effective Stiffness and Tissue Level Stress
,”
J. Biomech.
0021-9290,
27
, pp.
433
444
.
50.
Hollister
,
S. J.
,
Fyrhie
,
D. P.
,
Jepsen
,
K. J.
, and
Goldstein
,
S. A.
, 1991, “
Application of Homogenization Theory to the Study of Trabecular Bone Mechanics
,”
J. Biomech.
0021-9290,
24
, pp.
825
839
.
51.
Breuls
,
R. G.
,
Sengers
,
B. G.
,
Oomens
,
C. W.
,
Bouten
,
C. V.
, and
Baaijans
,
F. P.
, 2002, “
Predicting Local Cell Deformations in Engineered Tissue Constructs: A Multilevel Finite Element Approach
,”
J. Biomech. Eng.
0148-0731,
124
, pp.
198
207
.
52.
Oda
,
M.
,
Nemat-Nasser
,
S.
, and
Mehrabadi
,
M. M.
, 1982, “
A Statistical Study Of Fabric in a Random Assembly of Spherical Granules
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
6
, pp.
77
82
.
53.
Chandran
,
P. L.
, and
Barocas
,
V. H.
, “
Deterministic Material-Based Averaging Theory Model of Collagen Gel Micromechanics
,”
ASME J. Biomech. Eng.
(accepted).
54.
Chandran
,
P. L.
, 2005, “
Microstructural Mechanics of Collagen Gels and Tissue Equivalents
,” Ph.D. thesis, University of Minnesota.
55.
Hoel
,
P. G.
, 1971,
Introduction to Mathematical Statistics
,
Wiley
, New York.
56.
Nemat-Nasser
,
S.
, and
Mehrabadi
,
M. M.
, 1983,
Stress and Fabric in Granular Masses
,
Elsevier
, Amsterdam.
57.
Fuller
,
G. G.
, 1995,
Optical Rheometry of Complex Fluids
,
Oxford University Press
, New York.
58.
Bryant-Greenwood
,
G. D.
, 1998, “
The Extracellular Matrix of the Human Fetal Membranes: Structure and Function
,”
Placenta
0143-4004,
19
, pp.
1
11
.
59.
Blondel
,
B.
,
Roijen
,
I.
, and
Cheneval
,
J. P.
, 1971, “
Heart Cells in Culture—Simple Method for Increasing Proportion of Myoblasts
,”
Experientia
0014-4754,
27
, p.
356
.
60.
Hori
,
M.
, and
Nemat-Nasser
,
S.
, 1999, “
On Two Micromechanics Theories for Determining Micro–Macro Relations in Heterogeneous Solids
,”
Mech. Mater.
0167-6636,
31
, pp.
667
682
.
61.
Nemat-Nasser
,
S.
, 1999,
Micromechanics: Overall Properties of Heterogeneous
,
Elsevier
, Amsterdam.
You do not currently have access to this content.