As a first step towards reproducing desired three-dimensional joint loading and motion on a dynamic knee simulator, the goal of this study was to develop and verify a three-dimensional computational model that generated control profiles for the simulator using desired knee loading and motion as model inputs. The developed model was verified by predicting tibio-femoral loading on an instrumented analog knee for given actuator forces and the ability to generate simulator control profiles was demonstrated using a three-dimensional walking profile. The model predicted axial tibia loading for a sagittal-plane dual-limb squat within 1% of measured peak loading. Adding out-of-sagittal-plane forces decreased the accuracy of load prediction. The model generated control profiles to the simulator that produced axial tibia loading within 16% of desired for walking. Discrepancies in predicted and measured quadriceps forces influenced the accuracy of the generated control profiles. Future work will replace the analog knee in both the model and machine with a prosthetic knee.

1.
Ahmed
,
A. M.
, and
McLean
,
C.
, 2002, “
In Vitro Measurement of the Restraining Role of the Anterior Cruciate Ligament During Walking and Stair Ascent
,”
ASME J. Biomech. Eng.
0148-0731
124
(
6
), pp.
768
779
.
2.
Mizuno
,
Y.
,
Kumagai
,
M.
,
Mattessich
,
S. M.
,
Elias
,
J. J.
,
Ramrattan
,
N.
,
Cosgarea
,
A. J.
, and
Chao
,
E. Y.
, 2001, “
Q-angle Influences Tibiofemoral and Patellofemoral Kinematics
,”
J. Orthop. Res.
0736-0266
19
(
5
), pp.
834
840
.
3.
Kumagai
,
M.
,
Mizuno
,
Y.
,
Mattessich
,
S. M.
,
Elias
,
J. J.
,
Cosgarea
,
A. J.
, and
Chao
,
E. Y.
, 2002, “
Posterior Cruciate Ligament Rupture Alters In Vitro Knee Kinematics
,”
Clin. Orthop. Relat. Res.
0009-921X
395
, pp.
241
248
.
4.
Elias
,
J. J.
,
Kumagai
,
M.
,
Mitchell
,
I.
,
Mizuno
,
Y.
,
Mattessich
,
S. M.
,
Webb
,
J. D.
, and
Chao
,
E. Y.
, 2002, “
In Vitro Kinematic Patterns are Similar for a Fixed Platform and a Mobile Bearing Prosthesis
,”
J. Arthroplasty
0883-5403
17
(
4
), pp.
467
474
.
5.
Paviovic
,
J. L.
,
Kirstukas
,
S. J.
,
Touchi
,
H.
,
Bechtold
,
J. E.
, and
Gustilo
,
R. B.
, 1994, Dynamic Simulation Machine for Measurement of Knee Mechanics and Intra-articular Pressures, ASME Advances in Bioengineering,
M.
Askew
Ed.,
ASME
, New York, Vol.
28
, pp.
277
278
.
6.
McLean
,
C. A.
, and
Ahmed
,
A. M.
, 1993, “
Design and Development of an Unconstrained Dynamic Knee Simulator
,”
ASME J. Biomech. Eng.
0148-0731
115
(
2
), pp.
144
148
.
7.
McLean
,
C. A.
, and
Ahmed
,
A. M.
, 1994, Design and Performance of an Unconstrained Dynamic Knee Simulator,
ASME Advances in Bioengineering
,
M.
Askew
, Ed., New York, Vol.
28
, pp.
285
286
.
8.
Maletsky
,
L. P.
, and
Hillberry
,
B. M.
, 2000, Loading Evaluation of Knee Joint During Walking Using the Next Generation Knee Simulator,
ASME Advances in Bioengineering
,
T. A.
Conway
ed.,
ASME
, Orlando, Florida, Vol.
48
, pp.
91
92
.
9.
Maletsky
,
L. P.
, and
Hillberry
,
B. M.
, 2005, “
Simulating Dynamic Knee Activities Using a Five-Axis Knee Simulator
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
1
), pp.
123
133
.
10.
Hersh
,
J. F.
, 1980, “
Laboratory Evaluation of Knee Prostheses
,” M.S. thesis, Mechanical Engineering, Purdue University, West Lafayette, IN.
11.
Hefzy
,
M. S.
, and
Yang
,
H.
, 1993, “
A Three-Dimensional Anatomical Model of the Human Patello-femoral Joint, for the Determination of Patello-Femoral Motions and Contact Characteristics
,”
J. Biomed. Eng.
0141-5425,
15
(
4
), pp.
289
302
.
12.
Hirokawa
,
S.
, 1991, “
Three-Dimensional Mathematical Model Analysis of the Patellofemoral Joint
,”
J. Biomech.
0021-9290,
24
(
8
), pp.
659
671
.
13.
van Eijden
,
T. M.
,
Kouwenhoven
,
E.
,
Verburg
,
J.
, and
Weijs
,
W. A.
, 1986, “
A Mathematical Model of the Patellofemoral Joint
,”
J. Biomech.
0021-9290,
19
(
3
), pp.
219
229
.
You do not currently have access to this content.