We consider the effect of geometrical configuration on the steady flow field of representative geometries from an in vivo anatomical data set of end-to-side distal anastomoses constructed as part of a peripheral bypass graft. Using a geometrical classification technique, we select the anastomoses of three representative patients according to the angle between the graft and proximal host vessels (GPA) and the planarity of the anastomotic configuration. The geometries considered include two surgically tunneled grafts with shallow GPAs which are relatively planar but have different lumen characteristics, one case exhibiting a local restriction at the perianastomotic graft and proximal host whilst the other case has a relatively uniform cross section. The third case is nonplanar and characterized by a wide GPA resulting from the graft being constructed superficially from an in situ vein. In all three models the same peripheral resistance was imposed at the computational outflows of the distal and proximal host vessels and this condition, combined with the effect of the anastomotic geometry, has been observed to reasonably reproduce the in vivo flow split. By analyzing the flow fields we demonstrate how the local and global geometric characteristics influences the distribution of wall shear stress and the steady transport of fluid particles. Specifically, in vessels that have a global geometric characteristic we observe that the wall shear stress depends on large scale geometrical factors, e.g., the curvature and planarity of blood vessels. In contrast, the wall shear stress distribution and local mixing is significantly influenced by morphology and location of restrictions, particular when there is a shallow GPA. A combination of local and global effects are also possible as demonstrated in our third study of an anastomosis with a larger GPA. These relatively simple observations highlight the need to distinguish between local and global geometric influences for a given reconstruction. We further present the geometrical evolution of the anastomoses over a series of follow-up studies and observe how the lumen progresses towards the faster bulk flow of the velocity in the original geometry. This mechanism is consistent with the luminal changes in recirculation regions that experience low wall shear stress. In the shallow GPA anastomoses the proximal part of the native host vessel occludes or stenoses earlier than in the case with wide GPA. A potential contribution to this behavior is suggested by the stronger mixing that characterizes anastomoses with large GPA.
Skip Nav Destination
e-mail: s.sherwin@imperial.ac.uk
Article navigation
December 2005
Technical Papers
Local and Global Geometric Influence on Steady Flow in Distal Anastomoses of Peripheral Bypass Grafts
S. Giordana,
S. Giordana
Department of Aeronautics, Department of Bioengineering and Regional Vascular Unit, St Mary’s Hospital,
Imperial College London
, London U.K.
Search for other works by this author on:
S. J. Sherwin,
S. J. Sherwin
Department of Aeronautics, Department of Bioengineering and Regional Vascular Unit, St Mary’s Hospital,
e-mail: s.sherwin@imperial.ac.uk
Imperial College London
, London U.K.
Search for other works by this author on:
J. Peiró,
J. Peiró
Department of Aeronautics, Department of Bioengineering and Regional Vascular Unit, St Mary’s Hospital,
Imperial College London
, London U.K.
Search for other works by this author on:
D. J. Doorly,
D. J. Doorly
Department of Aeronautics, Department of Bioengineering and Regional Vascular Unit, St Mary’s Hospital,
Imperial College London
, London U.K.
Search for other works by this author on:
J. S. Crane,
J. S. Crane
Department of Aeronautics, Department of Bioengineering and Regional Vascular Unit, St Mary’s Hospital,
Imperial College London
, London U.K.
Search for other works by this author on:
K. E. Lee,
K. E. Lee
Department of Aeronautics, Department of Bioengineering and Regional Vascular Unit, St Mary’s Hospital,
Imperial College London
, London U.K.
Search for other works by this author on:
N. J. W. Cheshire,
N. J. W. Cheshire
Department of Aeronautics, Department of Bioengineering and Regional Vascular Unit, St Mary’s Hospital,
Imperial College London
, London U.K.
Search for other works by this author on:
C. G. Caro
C. G. Caro
Department of Aeronautics, Department of Bioengineering and Regional Vascular Unit, St Mary’s Hospital,
Imperial College London
, London U.K.
Search for other works by this author on:
S. Giordana
Department of Aeronautics, Department of Bioengineering and Regional Vascular Unit, St Mary’s Hospital,
Imperial College London
, London U.K.
S. J. Sherwin
Department of Aeronautics, Department of Bioengineering and Regional Vascular Unit, St Mary’s Hospital,
Imperial College London
, London U.K.e-mail: s.sherwin@imperial.ac.uk
J. Peiró
Department of Aeronautics, Department of Bioengineering and Regional Vascular Unit, St Mary’s Hospital,
Imperial College London
, London U.K.
D. J. Doorly
Department of Aeronautics, Department of Bioengineering and Regional Vascular Unit, St Mary’s Hospital,
Imperial College London
, London U.K.
J. S. Crane
Department of Aeronautics, Department of Bioengineering and Regional Vascular Unit, St Mary’s Hospital,
Imperial College London
, London U.K.
K. E. Lee
Department of Aeronautics, Department of Bioengineering and Regional Vascular Unit, St Mary’s Hospital,
Imperial College London
, London U.K.
N. J. W. Cheshire
Department of Aeronautics, Department of Bioengineering and Regional Vascular Unit, St Mary’s Hospital,
Imperial College London
, London U.K.
C. G. Caro
Department of Aeronautics, Department of Bioengineering and Regional Vascular Unit, St Mary’s Hospital,
Imperial College London
, London U.K.J Biomech Eng. Dec 2005, 127(7): 1087-1098 (12 pages)
Published Online: June 15, 2005
Article history
Received:
July 28, 2004
Revised:
June 15, 2005
Citation
Giordana, S., Sherwin, S. J., Peiró, J., Doorly, D. J., Crane, J. S., Lee, K. E., Cheshire, N. J. W., and Caro, C. G. (June 15, 2005). "Local and Global Geometric Influence on Steady Flow in Distal Anastomoses of Peripheral Bypass Grafts." ASME. J Biomech Eng. December 2005; 127(7): 1087–1098. https://doi.org/10.1115/1.2073507
Download citation file:
Get Email Alerts
Effect of Internal Mechanical Environment of Porous Scaffolds on Mechano-driven Bone Ingrowth: A Numerical Study
J Biomech Eng (September 2023)
In Silico Mechanical Effort Analysis of the All-On-4 Design Performed With Platform-Switching Distal Short Dental Implants
J Biomech Eng (September 2023)
Related Articles
Particle-Hemodynamics Simulations and Design Options for Surgical Reconstruction of Diseased Carotid Artery Bifurcations
J Biomech Eng (April,2004)
Fluid Flow Structure in Arterial Bypass Anastomosis
J Biomech Eng (August,2005)
Metabolic Model of Autoregulation in the Circle of Willis
J Biomech Eng (June,2006)
Numerical Study of Shear-Induced Thrombus Formation Over Aterial Stent Struts
J. Med. Devices (June,2009)
Related Proceedings Papers
Related Chapters
Section III: Subsections NC and ND — Class 2 and 3 Components
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 1, Fourth Edition
Concluding remarks
Mechanical Blood Trauma in Circulatory-Assist Devices
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine