Abstract

This work presents a novel and extensive investigation of mathematical regression techniques, for the prediction of laboratory-type kinematic measurements during human gait, from wearable measurement devices, such as gyroscopes and accelerometers. Specifically, we examine the hypothesis of predicting the segmental angles of the legs (left and right foot, shank and thighs), from rotational foot velocities and translational foot accelerations. This first investigation is based on kinematic data emulated from motion-capture laboratory equipment. We employ eight established regression algorithms with different properties, ranging from linear methods and neural networks with polynomial support and expanded nonlinearities, to radial basis functions, nearest neighbors and kernel density methods. Data from five gait cycles of eight subjects are used to perform both inter-subject and intra-subject assessments of the prediction capabilities of each algorithm, using cross-validation resampling methods. Regarding the algorithmic suitability to gait prediction, results strongly indicate that nonparametric methods, such as nearest neighbors and kernel density based, are particularly advantageous. Numerical results show high average prediction accuracy (ρ=0.980.99,RMS=5.63°2.30°,MAD=4.43°1.52° for inter∕intra-subject testing). The presented work provides a promising and motivating investigation on the feasibility of cost-effective wearable devices used to acquire large volumes of data that are currently collected only from complex laboratory environments.

1.
Morris
,
S. J.
, and
Paradiso
,
J. A.
, 2002, “
Shoe-Integrated Sensor System for Wireless Gait Analysis and Real-Time Feedback
,” in
Proceedings of the 2nd Joint IEEE Engineering in Medicine and Biology Society (EMBS) and the Biomedical Engineering Society (BMES) Conference
. Houston.
2.
Nester
,
C.
,
Howard
,
D.
,
Thorsteinsson
,
F.
Pepper
,
M.
,
Fulford
,
R.
,
Shklarski
,
D.
,
Murray
,
I.
,
Barton
,
J.
,
Nederhand
,
M.
,
Bussmann
,
H.
,
Slycke
,
P. J.
, and
Carter
,
M.
, 2004, “
Real World Monitoring of Prostheses and Footwear
,” in
Proceedings of the 11th World Congress of the International Society for Prosthetics and Orthotics (ISPO)
. Hong Kong.
3.
Zhang
,
K.
,
Sun
,
M.
,
Lester
,
D. K.
,
Pi Sunyer
,
F. X.
,
Boozer
,
C. N.
, and
Longman
,
R. W.
, 2005, “
Assessment of Human Locomotion by using an Insole Measurement System and Artificial Neural Networks
,”
J. Biomech.
0021-9290 (to be published).
4.
Duda
,
R. O.
,
Hart
,
P. E.
, and
Stork
,
D. G.
, 2001,
Pattern Classification
, 2nd ed.
Wiley
, New York.
5.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J. H.
, 2001,
The Elements of Statistical Learning
,
Springer-Verlag
, Berlin.
6.
Jain
,
A. K.
,
Duin
,
R. P. W.
, and
Mao
,
J.
, 2000, “
Statistical Pattern Recognition: A Review
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828
22
(
1
), pp.
4
37
.
7.
Chau
,
T.
, 2001a, “
A Review of Analytical Techniques for Gait Data, Part 1: Fuzzy, Statistical and Fractal Methods
,”
Gait and Posture
13
, pp.
49
66
.
8.
Chau
,
T.
, 2001b, “
A Review of Analytical Techniques for Gait Data. Part 2: Neural Network and Wavelet Methods
,”
Gait and Posture
13
, pp.
102
120
.
9.
Tong
,
K. Y.
, and
Granat
,
M. H.
, 1998, “
Virtual Artificial Sensor Technique for Functional Electrical Stimulation
,”
Med. Eng. Phys.
1350-4533
20
, pp.
458
468
.
10.
Cappozzo
,
A.
,
Catani
,
F.
,
Croce
,
U. D.
, and
Leardini
,
A.
, 1995, “
Position and Orientation in Space of Bones During Movement: Anatomical Frame Definition and Determination
,”
Clin. Biomech. (Los Angel. Calif.)
0191-7870
10
, pp.
171
178
.
11.
Leardini
,
A.
,
Cappozzo
,
A.
,
Catani
,
F.
,
Toksvig-Larsen
,
S.
,
Petitto
,
A.
,
Sforza
,
V.
,
Cassanelli
,
G.
, and
Giannini
,
S.
, 1999, “
Validation of a Functional Method for the Estimation of Hip Joint Center Location
,”
J. Biomech.
0021-9290
32
, pp.
99
103
.
12.
Ivakhnenko
,
A. G
, 1971, “
Polynomial Theory of Complex Systems
,”
IEEE Trans. Syst. Man Cybern.
0018-9472
1
, pp.
364
378
.
13.
Madala
,
H. R.
, and
Ivakhnenko
,
A. G.
, 1994,
Inductive learning algorithms for complex systems modelling
,
CRC Press
.
14.
Oh
,
S.-K.
, and
Pedrycz
,
W.
, 2002, “
The Design of Self-Organising Polynomial Neural Networks
,”
Information Sciences
141
, pp.
237
258
.
15.
Voss
,
M. S.
, 2003, “
Social Programming using Functional Swarm Optimization
,” in
Proceedings of the IEEE Swarm Intelligence Symposium (SIS03)
, Indianapolis.
16.
Bishop
,
C. M.
, 1996,
Neural Networks for Pattern Recognition
,
Oxford University Press
, New York.
17.
Haykin
,
S.
, 1999,
Neural Networks; AComprehensive Foundation
,
Prentice Hall
, Englewood Cliffs, NJ.
18.
Riedmiller
,
M.
, and
Braun
,
H.
, 1993, “
A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm
,” in
Proceedings of the IEEE International Conference on Neural Networks
. San Fransisco.
19.
Patra
,
J. C.
,
Pal.
,
R. N.
,
Chatterji
,
B. N.
, and
Panda
,
G.
, 1999, “
Identification of Non-Linear Dynamic Systems using Functional-Link Artificial Neural Networks
,”
IEEE Trans. Syst. Man Cybern.
0018-9472
29
(
2
), pp.
254
262
.
20.
Chen
,
C. L. P.
, and
Wan
J. Z.
, 1999, “
A Rapid Learning and Dynamic Stepwise Updating Algorithm for Flat Neural Networks and the Application to Time-Series Prediction
,”
IEEE Trans. Syst. Man Cybern.
0018-9472
29
(
1
), pp.
62
72
.
21.
Specht
,
D. F.
, 1991, “
A General Regression Neural Network
,”
IEEE Trans. Neural Netw.
1045-9227
2
(
6
), pp.
568
576
.
22.
Goulermas
,
J. Y.
,
Findlow
,
A. H.
,
Nester
,
C. J.
,
Howard
,
D.
, and
Bowker
,
P.
, 2005, “
Automated Design of Robust Discriminant Analysis Classifier, for Foot Pressure Lesions using Kinematic Data
,”
IEEE Trans. Biomed. Eng.
0018-9294
52
(
9
), pp.
1549
1562
.
You do not currently have access to this content.