In normal daily activities, ligaments are subjected to repeated loads, and respond to this environment with creep and fatigue. While progressive recruitment of the collagen fibers is responsible for the toe region of the ligament stress-strain curve, recruitment also represents an elegant feature to help ligaments resist creep. The use of artificial intelligence techniques in computational modeling allows a large number of parameters and their interactions to be incorporated beyond the capacity of classical mathematical models. The objective of the work described here is to demonstrate a tool for modeling creep of the rabbit medial collateral ligament that can incorporate the different parameters while quantifying the effect of collagen fiber recruitment during creep. An intelligent algorithm was developed to predict ligament creep. The modeling is performed in two steps: first, the ill-defined fiber recruitment is quantified using the fuzzy logic. Second, this fiber recruitment is incorporated along with creep stress and creep time to model creep using an adaptive neurofuzzy inference system. The model was trained and tested using an experimental database including creep tests and crimp image analysis. The model confirms that quantification of fiber recruitment is important for accurate prediction of ligament creep behavior at physiological loads.

1.
Thornton
,
G. M.
,
Oliynyk
,
A.
,
Frank
,
C. B.
, and
Shrive
,
N. G.
, 1997, “
Ligament Creep Cannot be Predicted from Stress Relaxation at Low Stress: A Biomechanical Study of the Rabbit Medial Collateral Ligament
,”
J. Orthop. Res.
0736-0266,
15
, pp.
652
656.
2.
Woo
SL-Y.
,
Gomez
M. A
, and
Akeson
W. H.
, 1981, “
The Time and History-Dependent Viscoelastic Properties of the Canine Medial Collateral Ligament
,”
ASME J. Biomech. Eng.
0148-0731,
103
, pp.
293
298
.
3.
Woo
SL-Y.
,
Peterson
R. H.
,
Ohland
K. J.
,
Sites
,
T. J.
, and
Danto
,
M. I.
, 1990, “
The Effects of Strain Rate on the Properties of the Medial Collateral Ligament in Skeletally Immature and Mature Rabbits: A Biomechanical and Histological Study
,”
J. Orthop. Res.
0736-0266,
8
, pp.
712
721
4.
Pioletti
,
D. P.
, and
Rakotomanana
,
L. R.
, 2000, “
Non-Linear Viscoelastic Laws for Soft Biological Tissues
,”
Eur. J. Mech. A/Solids
0997-7538,
19
, pp.
749
759
.
5.
Caler
,
W. E.
, and
Carter
,
D. R.
, 1989, “
Bone Creep-Fatigue Damage Accumulation
,”
J. Biomech.
0021-9290,
22
, pp.
625
35
.
6.
Lam
,
T. C.
,
Thomas
,
C. G.
,
Shrive
,
N. G.
,
Frank
,
C. B.
, and
Sabiston
,
C. P.
, 1990, “
The Effects of Temperature on the Viscoelastic Properties of the Rabbit Medial Collateral Ligament
ASME J. Biomech. Eng.
0148-0731,
112
, pp.
147
152
.
7.
Fung
,
Y. C.
, 1968, “
Biomechanics: Its Scope, History, and Some Problems of Continuum Mechanics in Physiology
,”
Appl. Mech. Rev.
0003-6900,
21
, pp.
1
20
.
8.
Pioletti
,
D. P.
,
Rakotomanana
,
L.
,
Gillieron
,
C.
,
Leyvraz
,
P. F.
, and
Benvenuti
,
J. F.
, 1996, “
Nonlinear Viscoelasticity of the ACL: Experiments and Theory
,”
Computer Methods in Biomechanics and Biomedical Engineering
, pp.
271
280
.
9.
Truesdell
,
C.
, and
Noll
,
W.
, 1992,
The Non-Linear Field Theories of Mechanics
,
Springer-Verlag
, New York.
10.
Bonet
,
J.
, and
Burton
,
A. J.
, 1998, “
A Simple Orthotropic, Transversely Isotropic Hyperelastic Constitutive Equation for Large Strain Computations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
162
, pp.
151
164
.
11.
Thornton
G. M.
,
Frank
C. B.
, and
Shrive
N. G.
, 2001, “
Ligament Creep Behaviour can be Predicted from Stress Relaxation by Incorporating Fibre Recruitment
,”
J. Rheol.
0148-6055,
45
, pp.
493
507
.
12.
Lakes
,
R. S.
, and
Vanderby
,
R.
, 1999, “
Interrelation of Creep and Relaxation: A Modelling Approach for Ligaments
,”
ASME J. Biomech. Eng.
0148-0731,
121
(
6
), pp.
612
615
.
13.
Yahia
L-H
,
Brunet
,
J.
,
Labelle
,
S.
, and
Rivard
,
C-H.
1990, “
A Scanning Electron Microscopic Study of Rabbit Ligaments Under Strain
,”
Matrix
0934-8832,
10
, pp.
58
64
.
14.
Matyas
,
J. R.
,
Chowdhury
,
P.
, and
Frank
,
C. B.
1988, “
Crimp as an Index of Ligament Strain
,”
Proceedings of the 22nd Annual Meeting of the Canadian Orthopedic Research Society, Ottawa, Ontario
, June, 1988, p.
113
.
15.
Zadeh
,
L. A.
, 1968, “
Probability measures of fuzzy events
,”
J. Math. Anal. Appl.
0022-247X,
23
, pp.
412
427
.
16.
Sugeno
,
M.
, 1985,
Industrial Applications of Fuzzy Control
,
Elsevier Science Publishing
, NY.
17.
Jang
,
J.-S. R.
,
,
Sun
,
C.-T.
, and
Mizutani
,
E.
, 1997,
Neuro-Fuzzy and Soft Computing, A Computational Approach to Learning and Machine Intelligence
,
Prentice-Hall
, Englewood Cliffs, NJ.
18.
Cordón
,
O.
,
Herrera
,
F.
,
Hoffmann
,
F.
and
Magdalena
,
L.
, 2001,
Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. Advances in Fuzzy Systems — Applications and Theory
, Series
19
,
World Scientific
, Singapore.
19.
Kosko
,
B.
, 1991,
Neural Networks and Fuzzy Systems: A Dynamical Systems Approach
,
Prentice-Hall
, Upper Saddle River, NJ.
20.
Beale
,
H.
, and
Demuth
,
H. B.
, 2001,
Fuzzy Systems Toolbox for Use with MATLAB
,
International Thomson Publishing
, 1st ed., MA.
21.
Tsoukalas
,
L. H.
, and
Uhrig
,
R. E.
, 1997,
Fuzzy and Neural Approaches in Engineering
, 1st ed., Wiley, NY.
22.
Roger Jang
,
J.-S.
, 1993, “
ANFIS: Adaptive-Network-based Fuzzy Inference Systems
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
23
(
3
), pp.
665
685
.
23.
Gallo
,
S.
,
Murino
,
T.
, and
Santilllo
,
L. C.
, 1999, “
Time Manufacturing Prediction: Preprocess Model in Neuro Fuzzy Expert System
,”
CD Proceedings of European Symposium on Intelligent Techniques, Greece
.
24.
Chae
,
M. J.
, and
Abraham
,
D. M.
, 2001, “
Neuro-Fuzzy Approached for Sanitary Sewer Pipeline Condition Assessment
,”
J. Comput. Civ. Eng.
0887-3801,
15
(
1
), pp.
4
14
.
25.
Thornton
,
G. M.
,
Shrive
,
N. G.
, and
Frank
,
C. B.
, 2002, “
Ligament Creep Recruits FIbres at Low Stresses and Can Lead to Modulus-Reducing Fibre Damage at Higher Creep Stresses: A Study in Rabbit Medial Collateral Ligament Model
,”
J. Orthop. Res.
0736-0266,
20
, pp.
967
974
.
26.
Martinez
,
W. L.
, and
Martinez
,
A. R.
, 2002,
Computational Statistics Handbook with MATLAB®
,
Chapman & Hall/CRC Press
, NY.
27.
Woo
,
S. LY.
,
Gomez
,
M. A.
,
Endo
,
C. M.
, and
Akeson
,
W. H.
, 1981, “
On the Measurement of Ligament Strains and Strain Distribution
,”
Biorheology
0006-355X,
18
(
1
), pp.
139
140
28.
Zernicke
,
R. F.
,
Butler
,
D. L.
,
Grood
,
E. S.
, and
Hefzy
,
M. S.
, 1984, “
Strain Topography of Human Tendon and Fascia
,”
ASME J. Biomech. Eng.
0148-0731,
106
, pp.
177
180
29.
Lam
,
T. C.
,
Shrive
,
N. G.
, and
Frank
,
C. B.
, 1995, “
Variations in Rupture Site and Surface Strains at Failure in the Maturing Rabbit Medial Collateral Ligament
,”
ASME J. Biomech. Eng.
0148-0731,
117
, pp.
455
461
.
You do not currently have access to this content.