Mineralized collagen fibrils are the basic building blocks of bone tissue at the supramolecular level. Several disease states, manipulation of the expression of specific proteins involved in biomineralization, and treatment with different agents alter the extent of mineralization as well as the morphology of mineral crystals which in turn affect the mechanical function of bone tissue. An experimental assessment of mineralized fibers’ mechanical properties is challenged by their small size, leaving analytical and computational models as a viable alternative for investigation of the fibril-level mechanical properties. In the current study the variation of the elastic stiffness tensor of mineralized collagen fibrils with changing mineral volume fraction and mineral aspect ratios was predicted via a micromechanical model. The partitioning of applied stresses between mineral and collagen phases is also predicted for normal and shear loading of fibrils. Model predictions resulted in transversely isotropic collagen fibrils in which the modulus along the longer axis of the fibril was the greatest. All the elastic moduli increased with increasing mineral volume fraction whereas Poisson’s ratios decreased with the exception of ν12(=ν21). The partitioning of applied stresses were such that the stresses acting on mineral crystals were about 1.5, 15, and 3 times greater than collagen stresses when fibrils were loaded transversely, longitudinally, and in shear, respectively. In the overall the predictions were such that: (a) greatest modulus along longer axis; (b) the greatest mineral/collagen stress ratio along the longer axis of collagen fibers (i.e., greatest relief of stresses acting on collagen); and (c) minimal lateral contraction when fibers are loaded along the longer axis. Overall, the pattern of mineralization as put forth in this model predicts a superior mechanical function along the longer axis of collagen fibers, the direction which is more likely to experience greater stresses.

1.
Landis
,
W. J.
, 1995, “
The Strength of a Calcified Tissue Depends in Part on the Molecular Structure and Organization of its Constituent Mineral Crystals in their Organic Matrix
,”
Bone (N.Y.)
8756-3282
16
, pp.
533
544
.
2.
Lees
,
S.
1987, “
Considerations Regarding the structure of the Mammalian Mineralized Osteoid From Viewpoint of the Generalized Packing Model
,”
Connect. Tissue Res.
0300-8207,
16
,
281
303
.
3.
Lees
,
S.
, and
Prostak
,
K.
, 1988, “
The Locus of Mineral Crystallites in Bone
,”
Connect. Tissue Res.
0300-8207,
18
,
41
54
.
4.
Lees
,
S.
,
Prostak
,
K. S.
,
Ingle
,
V. K.
, and
Kjoller
,
K.
, 1994, “
The Loci of Mineral in Turkey Leg Tendon as Seen by Atomic Force Microscope and Electron Microscopy
,”
Calcif. Tissue Int.
0171-967X,
55
,
180
189
.
5.
Landis
,
W. J.
,
Hodgens
,
K. J.
,
Song
,
M. J.
,
J.
Arena
,
S.
Kiyonaga
,
M.
Marko
,
C.
Owen
, and
B. F.
McEwen
, 1996, “
Mineralization of Collagen May Occur on Fibril Surfaces: Evidence From Conventional and High-Voltage Electron Microscopy and Three-Dimensional Imaging
,”
J. Struct. Biol.
1047-8477,
117
,
24
35
.
6.
Fratzl
,
P.
,
N.
Fratzl-Zelman
,
K.
Klaushofer
,
G.
Vogl
, and
K.
Koller
, 1991, “
Nucleation and Growth of Mineral Crystals in Bone studied by Small- Angle X-Ray Scattering
,”
Calcif. Tissue Int.
0171-967X,
48
,
407
413
.
7.
Handschin
,
R. G.
, and
W. B.
Stern
, 1994, “
Crystallographic and Chemical Analysis of Human Bone Apatite (Crista Iliaca)
,”
Clin. Rheumatol.
0770-3198,
13
Suppl 1
,
75
90
.
8.
Knott
,
L.
, and
A. J.
Bailey
, 1998, “
Collagen Cross-Links in Mineralizing Tissues: A Review of Their Chemistry, Function, and Clinical Relevance
,”
Bone (N.Y.)
8756-3282,
22
,
181
187
.
9.
Eyre
,
D. R.
, 1981, “
Crosslink Maturation in Bone Collagen
,” in
The Chemistry and Biology of Mineralized Connective Tissues
,
A.
Veiss
, ed.,
Elsevier North-Holland
, NY. pp.
51
55
.
10.
Heywood
,
B. R.
,
N. H.
Sparks
,
R. P.
Shellis
,
S.
Weiner
, and
S.
Mann
, 1990, “
Ultrastructure, Morphology and Crystal Growth of Biogenic and Synthetic Apatites
,”
Connect. Tissue Res.
0300-8207,
25
,
103
119
.
11.
Mueller
,
K. H.
,
A.
Trias
, and
R. D.
Ray
, 1966,
Bone Density and Compostiton. Age-Related and Pathological Changes in Water and Mineral Content
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
48
,
140
148
.
12.
Quarles
,
L. D.
, and
M. K.
Drezner
, 2001, “
Pathophysiology of X-Linked Hypophosphatemia, Tumor-Induced Osteomalacia, and Autosomal Dominant Hypophosphatemia: A PerPHEXing Problem
,”
J. Clin. Endocrinol. Metab.
0021-972X,
86
,
494
496
.
13.
Roschger
,
P.
,
P.
Fratzl
,
J.
Eschberger
, and
K.
Klaushofer
, 1998, “
Validation of quantitative Backscattered Electron Imaging for the Measurement of Mineral Density Distribution in Human Bone Biopsies
,”
Bone (N.Y.)
8756-3282,
23
,
319
326
.
14.
Boskey
,
A. L.
, 1989, “
Noncollagenous Matrix Proteins and Their Role in Mineralization
,”
Bone Miner.
0169-6009,
6
,
111
123
.
15.
Eanes
,
E. D.
, and
A. W.
Hailer
, 1998, “
The Effect of Fluoride on the Size and Morphology of Apatite Crystals Grown From Physiologic Solutions
,”
Calcif. Tissue Int.
0171-967X,
63
,
250
257
.
16.
Fratzl
,
P.
,
S.
Schreiber
,
P.
Roschger
,
M. H.
Lafage
,
G.
Rodan
, and
K.
Klaushofer
, 1996,
Effects of Sodium Fluoride and Alendronate on the Bone Mineral in Minipigs: A Small-Angle X-Ray Scattering and Backscattered Electron Imaging Study
,”
J. Bone Miner. Res.
0884-0431,
11
,
248
253
.
17.
Freeman
,
J. J.
,
B.
Wopenka
,
M. J.
Silva
, and
J. D.
Pasteris
, 2001, “
Raman Spectroscopic Detection of Changes in Bioapatite in Mouse Femora as a Function of Age and In Vitro Fluoride Treatment
,”
Calcif. Tissue Int.
0171-967X,
68
,
156
162
.
18.
Katz
,
J. L.
, 1971, “
Hard Tissue as a Composite Material. I. Bounds on the Elastic Behavior
,”
J. Biomech.
0021-9290,
4
,
455
473
.
19.
Wagner
,
H. D.
, and
S.
Weiner
, 1992, “
On the Relationship Between the MicroStructure of Bone and Its Mechanical Stiffness
.
J. Biomech.
0021-9290,
25
,
1311
1320
.
20.
Kotha
,
S. P.
,
S.
Kotha
, and
N.
Guzelsu
, 2000, “
A Shear-Lag Model to Account for Interaction Effects Between Inclusions in Composites Reinforced With Rectangular Platelets
,”
Compos. Sci. Technol.
0266-3538,
60
,
2147
2158
.
21.
Jäger
,
I.
, and
P.
Fratzl
, 2000, “
Mineralized Collagen Fibrils: A Mechanical Model With a Staggered Arrangement of Mineral Particles
,”
Biophys. J.
0006-3495,
79
,
1737
1746
.
22.
Petruska
,
J. A.
, and
A. J.
Hodge
, 1964, “
A Subunit Model for the Tropocollagen Macromolecule
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
51
,
871
876
.
23.
Gilmore
,
R. S.
, and
J. L.
Katz
, 1982, “
Elastic Properties of Apatites
,”
J. Mater. Sci.
0022-2461,
17
,
1131
1141
.
24.
Rey
,
C.
,
B.
Collins
,
T.
Goehl
,
I. R.
Dickson
, and
M. J.
Glimcher
, 1989, “
The Carbonate Environment in Bone Mineral: A Resolution-Enhanced Fourier TransForm Infrared Spectroscopy Study
,”
Calcif. Tissue Int.
0171-967X,
45
,
157
164
.
25.
Rey
,
C.
,
V.
Renugopalakrishnan
,
B.
Collins
, and
M. J.
Glimcher
, 1991, “
Fourier Transform Infrared Spectroscopic Study of the Carbonate Ions in Bone Mineral During Aging
,”
Calcif. Tissue Int.
0171-967X,
49
,
251
258
.
26.
Sasaki
,
N.
, and
S.
Odajima
, 1996, “
Stress-Strain Curve and Young’s Modulus of a Collagen Molecule as Determined by the X-Ray Diffraction Technique
,”
J. Biomech.
0021-9290,
29
,
655
658
.
27.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
1364-5021,
A241
,
376
396
.
28.
Pedersen
,
O. B.
, 1983, “
Thermoelasticity and Plasticity of Composites -I. Mean Field Theory
,”
Acta Metall.
0001-6160,
31
,
1795
1808
.
29.
Mammone
,
J. F.
, and
S. M.
Hudson
, 1993, “
Micromechanics of Bone Strength and Fracture
,”
J. Biomech.
0021-9290,
26
,
439
446
.
30.
Zioupos
,
P.
,
J. D.
Currey
, and
A. J.
Hamer
, 1999, “
The Role of Collagen in the Declining Mechanical Properties of Aging Human Cortical Bone
,”
J. Biomed. Mater. Res.
0021-9304,
45
,
108
116
.
31.
Wang
,
X.
,
X.
Shen
,
X.
Li
, and
C. M.
Agrawal
, 2002, “
Age-Related Changes in the Collagen Network and Toughness of Bone
,”
Bone (N.Y.)
8756-3282,
31
,
1
7
.
32.
Fratzl
,
P.
,
N.
Fratzl-Zelman
, and
K.
Klaushofer
, 1993, “
Collagen Packing and Mineralization. An X-Ray Scattering Investigation of Turkey Leg Tendon
,”
Biophys. J.
0006-3495,
64
,
260
266
.
33.
Chapman
,
G. E.
, and
K. A.
McLauchlan
, 1969, “
The Hydration Structure of Collagen
,”
Proc. R. Soc. London, Ser. B
0962-8452,
173
,
223
234
.
34.
Pineri
,
M. H.
,
M.
Escoubes
, and
G.
Roche
, 1978, “
Water--Collagen Interactions: Calorimetric and Mechanical Experiments
,”
Biopolymers
0006-3525,
17
,
2799
2815
.
35.
Berendsen
,
H. J.
, and
C.
Migchelsen
, 1966, “
Hydration Structure of Collagen and Influence of Salts
,”
Fed. Proc.
0014-9446,
25
,
998
1002
.
36.
Swadener
,
J. G.
,
J. Y.
Rho
, and
G. M.
Pharr
, 2001, “
Effects of Anisotropy on Elastic Moduli Measured by Nanoindentation in Human Tibial Cortical Bone
,”
J. Biomed. Mater. Res.
0021-9304,
57
,
108
112
.
37.
Rho
,
J. Y.
,
T. Y.
Tsui
, and
G. M.
Pharr
, 1997, “
Elastic Properties of Human Cortical and Trabecular Lamellar Bone Measured by Nanoindentation
,”
Biomaterials
0142-9612,
18
,
1325
1330
.
38.
Hengsberger
,
S.
,
A.
Kulik
, and
P.
Zysset
, 2001, “
A Combined Atomic Force Microscopy and Nanoindentation Technique to Investigate the Elastic Properties of Bone Structural Units
,”
Eur. Cells Mater
1473-2262,
1
,
12
17
.
39.
Boskey
,
A.
,
M.
Maresca
, and
J.
Appel
, 1989, “
The Effects of Noncollagenous Matrix Proteins on Hydroxyapatite Formation and Proliferation in a Collagen Gel System
,”
Calcif. Tissue Res.
0008-0594,
21
,
171
176
; discussion 177–178.
40.
Takano
,
Y.
,
C. H.
Turner
,
I.
Owan
,
R. B.
Martin
,
S. T.
Lau
,
M. R.
Forwood
, and
D. B.
Burr
, 1999, “
Elastic Anisotropy and Collagen Orientation of Osteonal Bone are Dependent on the Mechanical Strain Distribution
,”
J. Orthop. Res.
0736-0266,
17
,
59
66
.
41.
Martin
,
R. B.
, and
D. L.
Boardman
, 1993, “
The Effects of Collagen Fiber Orientation, Porosity, Density, and Mineralization on Bovine Cortical Bone Bending Properties
,”
J. Biomech.
0021-9290,
26
,
1047
1054
.
42.
Martin
,
R. B.
, and
J.
Ishida
, 1989, “
The Relative Effects of Collagen Fiber Orientation, Porosity, Density, and Mineralization on Bone Strength
,”
J. Biomech.
0021-9290,
22
,
419
426
.
43.
Martin
,
R. B.
,
S. T.
Lau
,
P. V.
Mathews
,
V. A.
Gibson
, and
S. M.
Stover
, 1996, “
Collagen Fiber Organization is Related to Mechanical Properties and Remodeling in Equine Bone. A Comparison of Two Methods
,”
J. Biomech.
0021-9290,
29
,
1515
1521
.
44.
Borsato
,
K. S.
, and
N.
Sasaki
, 1997, “
Measurement of partition of stress between mineral and collagen phases in bone using X-ray diffraction techniques
,”
J. Biomech.
0021-9290,
30
,
955
957
.
45.
Traub
,
W.
,
T.
Arad
, and
S.
Weiner
, 1992, “
Growth of Mineral Crystals in Turkey Tendon Collagen Fibers
,”
Connect. Tissue Res.
0300-8207,
28
,
99
111
.
46.
Eppell
,
S. J.
,
W.
Tong
,
J. L.
Katz
,
L.
Kuhn
, and
M. J.
Glimcher
, 2001. “
Shape and Size of Isolated Bone Mineralites Measured Using Atomic Force Micrscopy
,”
J. Orthop. Res.
0736-0266,
19
,
1027
1034
.
47.
Kim
,
H. M.
,
C.
Rey
, and
M. J.
Glimcher
, 1995, “
Isolation of Calcium-Phosphate Crystals of Bone by Non-Aqueous Methods at Low Temperature
,”
J. Bone Miner. Res.
0884-0431,
10
,
1589
1601
.
48.
Erts
,
D.
,
L. J.
Gathercole
, and
E. D. T.
Atkins
, 1994, “
Scanning Probe Microscopy of Intrafibrillar Crystallites in Calcified Collagen
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
5
,
200
206
.
49.
Reilly
,
D. T.
, and
A. H.
Burstein
, 1975, “
The Elastic and Ultimate Properties of Compact Bone Tissue
,”
J. Biomech.
0021-9290,
8
,
393
405
.
50.
Knets
,
I.
, and
Malmeisters
,
A.
, 1977, “
Deformability and Strength of Human Compact Bone Tissue
,”
Mechanics of Biological Solids: Proc. Euromech. Colloquium 68.
G.
Brankov
, ed.,
Bulgarian Academy of Sciences
, Sofia.
51.
Ashman
,
R. B.
,
S. C.
Cowin
,
W. C.
Van Buskirk
, and
J. C.
Rice
, 1984, “
A Continuous Wave Technique For the Measurement of the Elastic Properties of Cortical Bone
,”
J. Biomech.
0021-9290,
17
,
349
361
.
52.
Clyne
,
T. W.
, and
Withers
,
P. J.
, 1993,
An Introduction to Metal Matrix Composites
,
Cambridge University Press
, Cambridge, UK.
You do not currently have access to this content.