We describe an experimental method and apparatus for the estimation of constitutive parameters of soft tissue using Magnetic Resonance Imaging (MRI), in particular for the estimation of passive myocardial material properties. MRI tissue tagged images were acquired with simultaneous pressure recordings, while the tissue was cyclically deformed using a custom built reciprocating pump actuator. A continuous three-dimensional (3D) displacement field was reconstructed from the imaged tag motion. Cavity volume changes and local tissue microstructure were determined from phase contrast velocity and diffusion tensor MR images, respectively. The Finite Element Method (FEM) was used to solve the finite elasticity problem and obtain the displacement field that satisfied the applied boundary conditions and a given set of material parameters. The material parameters which best fit the FEM predicted displacements to the displacements reconstructed from the tagged images were found by nonlinear optimization. The equipment and method were validated using inflation of a deformable silicon gel phantom in the shape of a cylindrical annulus. The silicon gel was well described by a neo-Hookian material law with a single material parameter C1=8.71±0.06kPa, estimated independently using a rotational shear apparatus. The MRI derived parameter was allowed to vary regionally and was estimated as C1=8.80±0.86kPa across the model. Preliminary results from the passive inflation of an isolated arrested pig heart are also presented, demonstrating the feasibility of the apparatus and method for isolated heart preparations. FEM based models can therefore estimate constitutive parameters accurately and reliably from MRI tagging data.

1.
Mandinov
,
L.
,
Eberli
,
F. R.
,
Seiler
,
C.
, and
Hess
,
O. M.
,
2000
, “
Diastolic Heart Failure
,”
Cardiovasc. Res.
,
45
, pp.
813
825
.
2.
Nielsen
,
P. M. F.
,
Malcolm
,
D. T. K.
,
Hunter
,
P. J.
, and
Charette
,
P. G.
,
2002
, “
Instrumentation and Procedures for Estimating the Constitutive Parameters of Inhomogeneous Elastic Membranes
,”
Biomech. Modeling Mechanobiol.
,
1
, pp.
211
218
.
3.
Malcolm
,
D. T. K.
,
Nielsen
,
P. M. F.
,
Hunter
,
P. J.
, and
Charette
,
P. G.
,
2002
, “
Strain Measurement in Biaxially Loaded Inhomogeneous Anisotropic Elastic Membranes
,”
Biomech. Modeling Mechanobiol.
,
1
, pp.
197
210
.
4.
Dokos
,
S.
,
Le Grice
,
I. J.
,
Smaill
,
B. H.
,
Kar
,
J.
, and
Young
,
A. A.
,
2000
, “
A Triaxial-Measurement Shear-Test Device for Soft Biological Tissues
,”
J. Biomech. Eng.
,
122
, pp.
471
478
.
5.
Zerhouni
,
E. A.
,
Parish
,
D. M.
,
Rogers
,
W. J.
,
Yang
,
A.
, and
Shapiro
,
E. P.
,
1988
, “
Human Heart: Tagging With MR Imaging—A Method for Noninvasive Assessment of Myocardial Motion
,”
Radiology
,
169
, pp.
59
63
.
6.
Axel
,
L.
, and
Dougherty
,
L.
,
1989
, “
MR Imaging of Motion With Spatial Modulation of Magnetization
,”
Radiology
,
171
, pp.
841
845
.
7.
Young
,
A. A.
,
Kraitchman
,
D. L.
,
Dougherty
,
L.
, and
Axel
,
L.
,
1995
, “
Tracking and Finite Element Analysis of Stripe Deformation in Magnetic Resonance Tagging
,”
IEEE Trans. Med. Imaging
,
14
, pp.
413
421
.
8.
Le Bihan
,
D.
,
Mangin
,
J. F.
,
Poupon
,
C.
,
Clark
,
C. A.
,
Pappata
,
S.
,
Molko
,
N.
, and
Chabriat
,
H.
,
2001
, “
Diffusion Tensor Imaging: Concepts and Applications
,”
J. Magn. Reson Imaging
,
13
, pp.
534
546
.
9.
Basser
,
P. J.
, and
Pierpaoli
,
C.
,
1998
, “
A Simplified Method to Measure the Diffusion Tensor From Seven MR Images
,”
Magn. Reson. Med.
,
39
, pp.
928
934
.
10.
Garrido
,
L.
,
Wedeen
,
V. J.
,
Kwong
,
K. K.
,
Spencer
,
U. M.
, and
Kantor
,
H.
,
1994
, “
Anisotropy of Water Diffusion in the Myocardium of Rat
,”
Circ. Res.
,
74
, pp.
789
793
.
11.
Hsu
,
E. W.
,
Muzikant
,
A. L.
,
Matulevicius
,
S. A.
,
Penland
,
R. C.
, and
Henriquez
,
C. S.
,
1998
, “
Magnetic Resonance Myocardial Fiber-Orientation Mapping With Direct Histological Correlation
,”
Am. J. Physiol.
,
274
, pp.
H1627–H1634
H1627–H1634
.
12.
Scollan
,
D. F.
,
Holmes
,
A.
,
Winslow
,
R.
, and
Forder
,
J.
,
1998
, “
Histological Validation of Myocardial Microstructure Obtained From Diffusion Tensor Magnetic Resonance Imaging
,”
Am. J. Physiol.
,
275
, pp.
H2308–H2318
H2308–H2318
.
13.
Green, A. E., and Zerna, W., 1968, Theoretical Elasticity, 2nd ed., Oxford University Press, London.
14.
Costa
,
K. D.
,
Hunter
,
P. J.
,
Rogers
,
J. M.
,
Guccione
,
J. M.
,
Waldman
,
L. K.
, and
McCulloch
,
A. D.
,
1996
, “
A Three-Dimensional Finite Element Method for Large Elastic Deformations of Ventricular Myocardium: I—Cylindrical and Spherical Polar Coordinates
,”
J. Biomech. Eng.
,
118
, pp.
452
463
.
15.
Costa
,
K. D.
,
Hunter
,
P. J.
,
Wayne
,
J. S.
,
Waldman
,
L. K.
,
Guccione
,
J. M.
, and
McCulloch
,
A. D.
,
1996
, “
A Three-Dimensional Finite Element Method for Large Elastic Deformations of Ventricular Myocardium: II—Prolate Spheroidal Coordinates
,”
J. Biomech. Eng.
,
118
, pp.
464
472
.
16.
Hunter
,
P. J.
, and
Smaill
,
B. H.
,
1988
, “
The Analysis of Cardiac Function: A Continuum Approach
,”
Prog. Biophys. Mol. Biol.
,
52
, pp.
101
164
.
17.
Young
,
A. A.
, and
Axel
,
L.
,
1992
, “
Three-Dimensional Motion and Deformation of the Heart Wall: Estimation With Spatial Modulation of Magnetization—A Model-Based Approach
,”
Radiology
,
185
, pp.
241
247
.
18.
Augenstein
,
K. F.
,
McVeigh
,
E. R.
, and
Young
,
A. A.
,
2001
, “
Magnetic Resonance Imaging and Ventricle Mechanics
,”
Philos. Trans. R. Soc. London
,
359
, pp.
1263
1275
.
19.
Young
,
A. A.
,
Axel
,
L.
,
Dougherty
,
L.
,
Bogen
,
D. K.
, and
Parenteau
,
C. S.
,
1993
, “
Validation of Tagging With MR Imaging to Estimate Material Deformation
,”
Radiology
,
188
, pp.
101
118
.
20.
Axel
,
L.
,
Goncalves
,
R. C.
, and
Bloomgarden
,
D.
,
1992
, “
Regional Heart Wall Motion: Two-Dimensional Analysis and Functional Imaging With MR Imaging
,”
Radiology
,
183
, pp.
745
750
.
21.
Young
,
A. A.
,
Cowan
,
B. R.
,
Thrupp
,
S. F.
,
Hedley
,
W. J.
, and
Dell’Italia
,
L. J.
,
2000
, “
Left Ventricular Mass and Colume: Fast Calculation With Guide-Point Modeling on MR Images
,”
Radiology
,
216
, pp.
597
602
.
22.
Choung, C. J., and Fung, Y. C., 1986, “Residual Stress in Arteries,” pp. 117–129, In Frontiers in Biomechanics, G. W. Schmid-Schonbein, S. L.-Y. Woo, and B. W. Zweifach, eds., Springer-Verlag, New York.
23.
Guccione
,
J. M.
,
McCulloch
,
A. D.
, and
Waldman
,
L. K.
,
1991
, “
Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model
,”
J. Biomech. Eng.
,
113
, pp.
42
55
.
24.
Omens
,
J. H.
,
MacKenna
,
D. A.
, and
McCulloch
,
A. D.
,
1993
, “
Measurement of Strain and Analysis of Stress in Resting Rat Left Ventricular Myocardium
,”
J. Biomech.
,
26
, pp.
665
676
.
25.
Hunter, P. J., Nielsen, P. M. F., Smaill, B. H., Le Grice, I. J., and Hunter, I. W., 1993, “An Anatomical Heart Model With Applications to Myocardial Activation and Ventricular Mechanics,” in High Performance Computing in Biomedical Research, T. C. Pilkington, B. Loftis, S. L.-Y. Woo, T. C. Palmer, and T. F. Budinger, eds., CRC Press, Boca Raton, Florida, pp. 3–26.
26.
Hunter, P. J., 1995, “Myocardial Constitutive Laws for Continuum Mechanics Models of the Heart,” in Advances in Experimental Medicine and Biology, S. Sideman and R. Beyar, eds., Plenum Press, New York, Vol. 382, pp. 303–318.
27.
Hunter, P. J., and Arts, T., 1997, “Tissue Remodelling With Micro-Structurally Based Material Laws,” in Analytical and Quantitative Cardiology: From Genetics to Function, S. Sideman and R. Beyar, eds., Plenum Press, New York, pp. 215–225.
28.
Criscione
,
J. C.
,
McCulloch
,
A. D.
, and
Hunter
,
W. C.
,
2002
, “
Constitutive Framework Optimized for Myocardium and Other High-Strain, Laminar Materials With One Fiber Family
,”
J. Mech. Phys. Solids
,
50
, pp.
1681
1702
.
29.
www.cmiss.org
30.
Gill, P. E., Murray, W., and Wright, M. H., Practical Optimization, Academic Press, London.
31.
Young
,
A. A.
, “
Model Tags: Direct Three-Dimensional Tracking of Heart Wall Motion From Tagged Magnetic Resonance Images
,”
Med. Image Anal
,
3
, pp.
361
372
.
32.
Atalar
,
E.
, and
McVeigh
,
E. R.
,
1994
, “
Optimization of Tag Thickness for Measuring Position With Magnetic Resonance Imaging
,”
IEEE Trans. Med. Imaging
,
13
, pp.
152
160
.
33.
O’Dell, W., 1995, “Myocardial Deformation Analysis in the Passive Dog Heart Using High Resolution MRI Tagging,” Ph.D. thesis, Dept. of Biomedical Engineering, Johns Hopkins Univ.
34.
Aletras
,
A. H.
, and
Wen
,
H.
,
2001
, “
Mixed Echo Train Acquisition Displacement Encoding With Stimulated Echoes: An Optimized DENSE Method for In Vivo Functional Imaging of the Human Heart
,”
Magn. Reson. Med.
,
46
, pp.
523
534
.
35.
Osman
,
N. F.
,
McVeigh
,
E. R.
, and
Prince
,
J. L.
,
2000
, “
Imaging Heart Motion Using Harmonic Phase MRI
,”
IEEE Trans. Med. Imaging
,
19
, pp.
186
202
.
36.
Zhu
,
Y.
,
1999
, “
A Spatiotemporal Model of Cyclic Kinematics and Its Application to Analyzing Nonrigid Motion With MR Velocity Images
,”
IEEE Trans. Med. Imaging
,
18
, pp.
557
569
.
37.
Epstein
,
F. H.
,
Yang
,
Z. Q.
,
Gilson
,
W. D.
,
Berr
,
S. S.
,
Kramer
,
C. M.
, and
French
,
B. A.
,
2002
, “
MR Tagging Early After Myocardial Infarction in Mice Demonstrates Contractile Dysfunction in Adjacent and Remote Regions
,”
Magn. Reson. Med.
,
48
, pp.
399
403
.
38.
Tseng
,
W.-Y. I.
,
Wedeen
,
V. J.
,
Reese
,
T. G.
,
Smith
,
R. N.
, and
Halpern
,
E. H.
,
2003
, “
Diffusion Tensor MRI of Myocardial Fibers and Sheets: Correspondence With Visible Cut-Face Texture
,”
J. Magn. Reson Imaging
,
17
, pp.
31
42
.
39.
Humphrey, J. D., 2002, Cardiovascular Solid Mechanics: Cells, Tissues, and Organs, Springer-Verlag, New York.
40.
Costa
,
K. D.
,
Holmes
,
J. W.
, and
McCulloch
,
A. D.
,
2001
, “
Modelling Cardiac Mechanical Properties in Three Dimensions
,”
Philos. Trans. R. Soc. London
,
359
, pp.
1233
1250
.
You do not currently have access to this content.