The objective of this work was to develop a robotic device to perform biopsy and therapeutic interventions in the breast with real-time magnetic resonance imaging (MRI) guidance. The device was designed to allow for (i) stabilization of the breast by compression, (ii) definition of the interventional probe trajectory by setting the height and pitch of a probe insertion apparatus, and (iii) positioning of an interventional probe by setting the depth of insertion. The apparatus is fitted with five computer-controlled degrees of freedom for delivering an interventional procedure. The entire device is constructed of MR compatible materials, i.e. nonmagnetic and non-conductive, to eliminate artifacts and distortion of the MR images. The apparatus is remotely controlled by means of ultrasonic motors and a graphical user interface, providing real-time MR-guided planning and monitoring of the operation. Joint motion measurements found probe placement in less than 50 s and sub-millimeter repeatability of the probe tip for same-direction point-to-point movements. However, backlash in the rotation joint may incur probe tip positional errors of up to 5 mm at a distance of 40 mm from the rotation axis, which may occur for women with large breasts. The imprecision caused by this backlash becomes negligible as the probe tip nears the rotation axis. Real-time MR-guidance will allow the physician to correct this error. Compatibility of the device within the MR environment was successfully tested on a 4 Tesla MR human scanner.

1.
Harms
,
S.
,
1996
, “
MRI in breast cancer diagnosis and treatment
,”
Curr. Probl. Diagn. Radiol.
,
25
, pp.
193
215
.
2.
Mushlin
,
A. I.
,
Kouides
,
R. W.
, and
Shapiro
,
D. E.
,
1998
, “
Estimating the accuracy of screening mammography: A meta-analysis
,”
Am. J. Prev. Med.
,
14
, pp.
143
153
.
3.
Fischer
,
U.
,
Kopka
,
L.
, and
Grabbe
,
E.
,
1998
, “
Magnetic resonance guided localization and biopsy of suspicious breast lesions
,”
Top Magn. Reson Imaging
,
9
, pp.
44
59
.
4.
Harms
,
S.
,
1998
, “
Breast magnetic resonance imaging
,”
Semin Ultrasound CT MR
,
19
, pp.
104
120
.
5.
Harms
,
S. E.
,
1998
, “
Integration of breast magnetic resonance imaging with breast cancer treatment
,”
Top Magn. Reson Imaging
,
9
, pp.
79
91
.
6.
Greenstein-Orel
,
S.
,
Schnall
,
M. D.
,
Newman
,
R. W.
,
Powell
,
C. M.
,
Torosian
,
M. H.
, and
Rosato
,
E. F.
,
1994
, “
MR Imaging-guided Localization and Biopsy of Breast Lesions: Initial Experience
,”
Radiology
,
193
, pp.
97
102
.
7.
Greenstein-Orel
,
S.
,
1996
, “
High-Resolution MR Imaging of the Breast
,”
Semin Ultrasound CT MR
,
17
, pp.
476
493
.
8.
Weinreb
,
J.
, and
Newstead
,
G.
,
1994
, “
Controversies in breast MRI
,”
Magn. Reson. Q.
,
10
, pp.
67
83
.
9.
Sabel
,
M.
, and
Aichinger
,
H.
,
1996
, “
Recent developments in breast imaging
,”
Phys. Med. Biol.
,
41
, pp.
315
368
.
10.
Coons
,
T.
,
1996
, “
MRI’s role in assessing and managing breast disease
,”
Radiology Technology
,
67
, pp.
311
336
.
11.
Heywang-Kobrunner
,
S. H.
,
Huynh
,
A. T.
,
Viehweg
,
P.
,
Hanke
,
W.
,
Requardt
,
H.
, and
Paprosch
,
I.
,
1994
, “
Prototype breast coil for MR-guided needle localization
,”
J. Comput. Assist. Tomogr.
,
18
, pp.
876
881
.
12.
Orang-Khadivi
,
K.
,
Pierce
,
B.
,
Ollom
,
C.
,
Floyd
,
L.
,
Siegle
,
R.
, and
Williams
,
R.
,
1994
, “
New magnetic resonance imaging techniques for the detection of breast cancer
,”
Breast Cancer Res. Treat.
,
32
, pp.
119
135
.
13.
Kuhl
,
C. K.
,
Elevelt
,
A.
,
Leutner
,
C. C.
,
Gieseke
,
J.
,
Pakos
,
E.
, and
Schild
,
H. H.
,
1997
, “
Interventional breast MR imaging: clinical use of a stereotactic localization and biopsy device
,”
Radiology
,
204
, pp.
667
675
.
14.
Hall-Craggs
,
M. A.
, and
Mumtaz
,
H.
,
1997
, “
Keeping abreast of magnetic resonance: development in breast cancer imaging
,”
Clin. Radiol.
52
, pp.
253
255
.
15.
Hulka
,
C. A.
,
Edmister
,
W. B.
,
Smith
,
B. L.
,
Tan
,
L.
,
Sgroi
,
D. C.
,
Campbell
,
T.
,
Kopans
,
D. B.
, and
Weisskoff
,
R. M.
,
1997
, “
Dynamic Echo-Planar Imaging of the Breast: Experience in Diagnosing Breast Carcinoma and Correlation with Tumor Angiogenesis
,”
Radiology
,
205
, pp.
837
842
.
16.
Fischer
,
U.
,
Vosshenrich
,
R.
,
Doler
,
W.
,
Hamadeh
,
A.
,
Oestmann
,
J. W.
, and
Grabbe
,
E.
,
1995
, “
MR imaging-guided breast intervention: experience with two systems
,”
Radiology
,
195
, pp.
533
538
.
17.
Gorczyca
,
D.
,
DeBruhl
,
N. D.
,
Sullenberger
,
P. C.
,
Farria
,
D.
,
Sinha
,
S.
, and
Bassett
,
L. W.
,
1995
, “
Wire Localization of Breast Lesions Before Biopsy: Use of an MR-Compatible Device in Phantoms and Cadavers
,”
American Journal of Radiology
,
165
, pp.
835
838
.
18.
Mumtaz
,
H.
,
Hall-Craggs
,
M. A.
,
Wotherspoon
,
A.
,
Paley
,
M.
,
Buonaccorsi
,
G.
,
Amin
,
Z.
,
Wilkinson
,
I.
,
Kissin
,
M. W.
,
Davidson
,
T. I.
,
Taylor
,
I.
, and
Brown
,
S. G.
,
1996
, “
Laser Therapy for Breast Cancer: MR Imaging and Histopathologic Correlation
,”
Radiology
,
200
, pp.
651
658
.
19.
Vogl
,
T. J.
,
Mack
,
M. G.
,
Straub
,
R.
,
Roggan
,
A.
, and
Felix
,
R.
,
1997
, “
Magnetic Resonance Imaging-Guided Abdominal Interventional Radiology: Laser-Induced Thermotherapy of Liver Metastases
,”
Endoscopy
,
29
, pp.
577
583
.
20.
Staren
,
E. D.
,
Sabel
,
M. S.
,
Gianakakis
,
L. M.
,
Wiener
,
G. A.
,
Hart
,
V. M.
,
Gorski
,
M.
,
Dowlatshahi
,
K.
,
Corning
,
B. F.
,
Haklin
,
M. F.
, and
Koukoulis
,
G.
,
1997
, “
Cryosurgery of breast cancer [see comments]
,”
Archives of Surgery
,
132
, pp.
28
33
; discussion 34.
21.
Tackenberg
,
J. N.
,
1990
, “
Cryolumpectomy: another option for breast cancer
,”
Nursing
,
20
, pp.
32J–34J
32J–34J
.
22.
Ablin
,
R. J.
,
1998
, “
The use of cryosurgery for breast cancer [letter; comment]
,”
Archives of Surgery
,
133
, pp.
106
106
.
23.
Cline
,
H. E.
,
Schenck
,
J. F.
,
Hynynen
,
K.
,
Watkins
,
R. D.
,
Souza
,
S. P.
, and
Jolesz
,
F. A.
,
1992
, “
MR-guided focused ultrasound surgery
,”
J. Comput. Assist. Tomogr.
,
16
, pp.
956
965
.
24.
Chinzei, K., Kikinis, R., and Jolesz, F. A., 1999, “MR Compatibility of Mechatronic Devices: Design Criteria,” Lecture Notes in Computer Science, MICCAI’99, Springer-Verlag, Berlin, Germany, 1679, pp. 1020–1030.
25.
Doler
,
W.
,
Fischer
,
U.
,
Metzger
,
I.
,
Harder
,
D.
, and
Grabbe
,
E.
,
1996
, “
Stereotaxic Add-on Device for MR-guided Biopsy of Breast lesions
,”
Radiology
,
200
, pp.
863
864
.
26.
Schneider
,
E.
,
Rohlin
,
K. W.
,
Schnall
,
M. D.
,
Giaquinto
,
R. O.
,
Morris
,
E. A.
, and
Ballon
,
D.
,
2001
, “
An Apparatus for MR-Guided Breast Lesion Localization and Core Biopsy: Design and Preliminary Results
,”
J. Magn. Reson Imaging
,
14
, pp.
243
253
.
27.
Kaiser
,
W. A.
,
Fischer
,
H.
,
Vagner
,
J.
, and
Selig
,
M.
,
2000
, “
Robotic System for Biopsy and Therapy of Breast Lesions in a High-Field Whole-Body Magnetic Resonance Tomography Unit
,”
Invest. Radiol.
,
35
, pp.
513
519
.
28.
Fischer, H., Hempel, E., Vagner, J., Gumb, L., Kaiser, W. A., and Melzer, A., 2000, “Telerobotics for High Precise Radiological Interventions,” Proc. of MICRO.tec 2000: VDE World Microtechnologies Congress, VDE-Verlag, Berlin, Germany, 2, pp. 387–394.
29.
Tsekos, N. V., Shudy, J., Yacoub, E., Tsekos, P. V., and Koutlas, I. G., 2001, “Development of a Robotic Device for MRI-Guided Interventions in the Breast,” Proc. of the IEEE 2nd International Symposium on Bioinformatics and Bioengineering Conference, pp. 200–207.
30.
Yacoub, E., Larson, B., Tsekos, P. V., Koutlas, I. G., Erdman, A. G., and Tsekos, N. V., 2002, “Robotic Device for MR-Guided Interventions in the Breast,” Proc. 10th International Society of Magnetic Resonance in Medicine, Society of Magnetic Resonance, Berkeley, CA, 1.
31.
Sandor, G. N., and Erdman, A. G., 1984, Advanced Mechanism Design: Analysis and Synthesis, Prentice-Hall Inc., Englewood Hills, New Jersey, pp. 609–611.
32.
Fichtinger, G., Krieger, A., Susil, R. C., Tanacs, A., Whitcomb, L. L., and Atalar, E., 2002, “Transrectal Prostate Biopsy Inside Closed MRI Scanner with Remote Actuation, under Real-Time Image Guidance,” Lecture Notes in Computer Science, MICCAI2002, Springer-Verlag, Berlin, Germany, 2488, pp. 91–98.
33.
Masamune
,
K.
,
Kobayashi
,
E.
,
Masutani
,
Y.
,
Suzuki
,
M.
,
Dohi
,
T.
,
Iseki
,
H.
, and
Takakura
,
K.
,
1995
, “
Development of a MRI-Compatible Needle Insertion Manipulator for Stereotactic Neurosurgery
,”
J. Image Guid Surg.
,
1
, pp.
242
248
.
34.
Masamune
,
K.
,
Sonderegger
,
M.
,
Isek
,
H.
,
Takakura
,
K.
,
Suzuki
,
M.
Dohi
,
and
Takeyoshi
,
D.
,
1996
, “
Robots for stereotactic neurosurgery
,”
Advanced Robotics
,
10
, pp.
391
401
.
35.
Miyata, N., Kobayachi, E., Kim, D., Masamune, K., Sakuma, I., Yahagi, N., Tsuji, T., Inada, H., Dohi, T., Iseki, H., and Takakura, K., 2002, “Micro-grasping Forceps Manipulator for MR-Guided Neurosurgery,” Lecture Notes in Computer Science, MICCAI 2002, Springer-Verlag, Berlin, Germany, 2488, pp. 107–113.
36.
Chinzei, K., Nobuhiko, H., Jolesz, F. A., and Kikinis, R., 2002, “MR Compatible Surgical Assist Robot: System Integration and Preliminary Feasibility Study,” Lecture Notes in Computer Science, MICCAI 2000, Springer-Verlag, Berlin, Germany, 1935, pp. 921–930.
37.
Fichtinger, G., Stoianovici, D., and Taylor, R. H., 2001, “The Surgical CAD/CAM Paradigm and an Implementation for Robotically Assisted Percutaneous Local Therapy,” Proc. 30th Applied Imagery Pattern Recognition Workshop, pp. 3–8.
38.
Larson, B. T., Tsekos, N. V., Erdman, A. G., Yacoub, E., Tsekos, P. V., and Koutlas, I. G., 2002, “Design of a Robotic Stereotactic Device for Biopsy and Minimally Invasive Interventions in the Breast with Real Time MRI Guidance,” Proc. ASME 2002 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Canada.
You do not currently have access to this content.