The purpose of this study was to develop a subject-specific 3-D model of the lower extremity to predict neuromuscular control effects on 3-D knee joint loading during movements that can potentially cause injury to the anterior cruciate ligament (ACL) in the knee. The simulation consisted of a forward dynamic 3-D musculoskeletal model of the lower extremity, scaled to represent a specific subject. Inputs of the model were the initial position and velocity of the skeletal elements, and the muscle stimulation patterns. Outputs of the model were movement and ground reaction forces, as well as resultant 3-D forces and moments acting across the knee joint. An optimization method was established to find muscle stimulation patterns that best reproduced the subject’s movement and ground reaction forces during a sidestepping task. The optimized model produced movements and forces that were generally within one standard deviation of the measured subject data. Resultant knee joint loading variables extracted from the optimized model were comparable to those reported in the literature. The ability of the model to successfully predict the subject’s response to altered initial conditions was quantified and found acceptable for use of the model to investigate the effect of altered neuromuscular control on knee joint loading during sidestepping. Monte Carlo simulations (N=100,000) using randomly perturbed initial kinematic conditions, based on the subject’s variability, resulted in peak anterior force, valgus torque and internal torque values of 378 N, 94 Nm and 71 Nm, respectively, large enough to cause ACL rupture. We conclude that the procedures described in this paper were successful in creating valid simulations of normal movement, and in simulating injuries that are caused by perturbed neuromuscular control.

1.
Daniel, D. M., and Fritschy, D., 1994, Anterior Cruciate Ligament Injuries, Philadelphia, W.B. Saunders.
2.
Frank
,
C. B.
, and
Jackson
,
D. W.
,
1997
, “
The Science of Reconstruction of the Anterior Cruciate Ligament
,”
J. Bone Jt. Surg., Am. Vol.
,
79
(
10
), pp.
1556
1576
.
3.
Griffin
,
L. Y.
,
Agel
,
J.
,
Albohm
,
M. J.
,
Arendt
,
E. A.
,
Dick
,
R. W.
,
Garrett
,
W. E.
,
Garrick
,
J. G.
,
Hewett
,
T. E.
,
Huston
,
L.
,
Ireland
,
M. L.
,
Johnson
,
R. J.
,
Kibler
,
W. B.
,
Lephart
,
S.
,
Lewis
,
J. L.
,
Lindenfeld
,
T. N.
,
Mandelbaum
,
B. R.
,
Marchak
,
P.
,
Teitz
,
C. C.
, and
Wojtys
,
E. M.
,
2000
, “
Noncontact Anterior Cruciate Ligament Injuries: Risk Factors and Prevention Strategies
,”
J. Am. Acad. Orthop. Surg.
,
8
(
3
), pp.
141
150
.
4.
Gilquist
,
J.
, and
Messner
,
K.
,
1999
, “
Anterior Cruciate Ligament Reconstruction and the Long-Term Incidence of Gonarthrosis
,”
Sports Med.
,
27
(
3
), pp.
143
156
.
5.
Sutton
,
A. J.
,
Muir
,
K. R.
,
Mockett
,
S.
, and
Fentem
,
P.
,
2001
, “
A Case-Control Study to Investigate the Relation Between Low and Moderate Levels of Physical Activity and Osteoarthritis of the Knee Using Data Collected as Part of the Allied Dunbar National Fitness Survey
,”
Ann. Rheum. Dis.
,
60
, pp.
756
764
.
6.
Boden
,
B. P.
,
Dean
,
G. S.
,
Feagin
, Jr.,
J. A.
, and
Garrett
, Jr.,
W. E.
,
2000
, “
Mechanisms of Anterior Cruciate Ligament Injury
,”
Orthopedics
,
23
(
6
), pp.
573
578
.
7.
Feagin
, Jr.,
J. A.
, and
Lambert
,
K. L.
,
1985
, “
Mechanism of Injury and Pathology of Anterior Cruciate Ligament Injuries
,”
Orthop. Clin. North Am.
,
16
(
1
), pp.
41
45
.
8.
Kirkendall
,
D. T.
, and
Garrett
, Jr.,
W. E.
,
2000
, “
The Anterior Cruciate Ligament Enigma. Injury Mechanisms and Prevention
,”
Clin. Orthop.
, (
372
), pp.
64
68
.
9.
Cross
,
M. J.
,
Gibbs
,
N. J.
, and
Bryant
,
G. J.
,
1989
, “
An Analysis of the Sidestep Cutting Manoeuvre
,”
Am. J. Sports Med.
,
17
(
3
), pp.
363
366
.
10.
Colby
,
S.
,
Francisco
,
A.
,
Yu
,
B.
,
Kirkendall
,
D.
,
Finch
,
M.
, and
Garrett
, Jr.,
W.
,
2000
, “
Electromyographic and Kinematic Analysis of Cutting Maneuvers. Implications for Anterior Cruciate Ligament Injury
,”
Am. J. Sports Med.
,
28
(
2
), pp.
234
240
.
11.
McNair
,
P. J.
,
Marshall
,
R. N.
, and
Matheson
,
J. A.
,
1990
, “
Important Features Associated With Acute Anterior Cruciate Ligament Injury
,”
N. Z. Med. J.
,
103
(
901
), pp.
537
539
.
12.
McLean
,
S. G.
,
Myers
,
P. T.
,
Neal
,
R. J.
, and
Walters
,
M. R.
,
1998
, “
A Quantitative Analysis of Knee Joint Kinematics During the Sidestep Cutting Maneuver. Implications for Non-Contact Anterior Cruciate Ligament Injury
,”
Bull. Hosp. Jt. Dis.
,
57
(
1
), pp.
30
38
.
13.
Butler
,
D. L.
,
Guan
,
Y.
,
Kay
,
M. D.
,
Cummings
,
J. F.
,
Feder
,
S. M.
, and
Levy
,
M. S.
,
1992
, “
Location-Dependent Variations in the Material Properties of the Anterior Cruciate Ligament
,”
J. Biomech.
,
25
(
5
), pp.
511
518
.
14.
Kanamori
,
A.
,
Woo
,
S. L.
,
Ma
,
C. B.
,
Zeminski
,
J.
,
Rudy
,
T. W.
,
Li
,
G.
, and
Livesay
,
G. A.
,
2000
, “
The Forces in the Anterior Cruciate Ligament and Knee Kinematics During a Simulated Pivot Shift Test: A Human Cadaveric Study Using Robotic Technology
,”
Arthroscopy
,
16
(
6
), pp.
633
639
.
15.
Markolf
,
K. L.
,
Burchfield
,
D. M.
,
Shapiro
,
M. M.
,
Shepard
,
M. F.
,
Finerman
,
G. A.
, and
Slauterbeck
,
J. L.
,
1995
, “
Combined Knee Loading States That Generate High Anterior Cruciate Ligament Forces
,”
J. Orthop. Res.
,
13
(
6
), pp.
930
935
.
16.
Arendt
,
E.
, and
Dick
,
R.
,
1995
, “
Knee Injury Patterns Among Men and Women in Collegiate Basketball and Soccer. NCAA Data and Review of Literature
,”
Am. J. Sports Med.
,
23
(
6
), pp.
694
701
.
17.
McLean
,
S. G.
,
Neal
,
R. J.
,
Myers
,
P. T.
, and
Walters
,
M. R.
,
1999
, “
Knee Joint Kinematics During the Sidestep Cutting Maneuver: Potential for Injury in Women
,”
Med. Sci. Sports Exercise
,
31
(
7
), pp.
959
968
.
18.
Neptune
,
R. R.
,
Wright
,
I. C.
, and
van den Bogert
,
A. J.
,
1999
, “
Muscle Coordination and Function During Cutting Movements
,”
Med. Sci. Sports Exercise
,
31
(
2
), pp.
294
302
.
19.
Simonsen
,
E. B.
,
Magnusson
,
S. P.
,
Bencke
,
J.
,
Naesborg
,
H.
,
Havkrog
,
M.
,
Ebstrup
,
J. F.
, and
Sorensen
,
H.
,
2000
, “
Can the Hamstring Muscles Protect the Anterior Cruciate Ligament During a Side-Cutting Maneuver?
,”
Scand. J. Med. Sci. Sports
,
10
(
2
), pp.
78
84
.
20.
Yu
,
B.
,
Kirkendall
,
D. T.
,
Taft
,
T. N.
, and
Garrett
, Jr.,
W. E.
,
2002
, “
Lower Extremity Motor Control-Related and Other Risk Factors for Noncontact Anterior Cruciate Ligament Injuries
,”
Instr Course Lect
,
51
, pp.
315
324
.
21.
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Ackland
,
T. R.
, and
Cochrane
,
J. L.
,
2001
, “
Anticipatory Effects on Knee Joint Loading During Running and Cutting Maneuvers
,”
Med. Sci. Sports Exercise
,
33
(
7
), pp.
1176
1181
.
22.
Besier
,
T. F.
,
Lloyd
,
D. G.
, and
Ackland
,
T. R.
,
2003
, “
Muscle Activation Strategies at the Knee During Running and Cutting Maneuvers
,”
Med. Sci. Sports Exercise
,
35
(
1
), pp.
119
127
.
23.
King
,
A. I.
,
1993
, “
Progress of Research on Impact Biomechanics
,”
J. Biomech. Eng.
,
115
(
4B
), pp.
582
587
.
24.
Neptune
,
R. R.
,
Wright
,
I. C.
, and
van den Bogert
,
A. J.
,
2000
, “
A Method for Numerical Simulation of Single Limb Ground Contact Events: Application to Heel-Toe Running
,”
Comput. Methods Biomech. Biomed. Eng.
,
3
(
4
), pp.
321
334
.
25.
Neptune
,
R. R.
,
Wright
,
I. C.
, and
van den Bogert
,
A. J.
,
2000
, “
The Influence of Orthotic Devices and Vastus Medialis Strength and Timing on Patellofemoral Loads During Running
,”
Clin. Biomech. (Los Angel. Calif.)
,
15
(
8
), pp.
611
618
.
26.
Wright
,
I. C.
,
Neptune
,
R. R.
,
van den Bogert
,
A. J.
, and
Nigg
,
B. M.
,
2000
, “
The Influence of Foot Positioning on Ankle Sprains
,”
J. Biomech.
,
33
(
5
), pp.
513
519
.
27.
Squires, G. L., 1968, “Practical Physics,” McGraw Hill, London.
28.
Lu
,
T. W.
, and
O’Connor
,
J. J.
,
1999
, “
Bone Position Estimation From Skin Marker Co-Ordinates Using Global Optimization With Joint Constraints
,”
J. Biomech.
,
32
(
2
), pp.
129
134
.
29.
Yeadon
,
M. R.
,
1990
, “
The Simulation of Aerial Movement—I. The Determination of Orientation Angles From Film Data
,”
J. Biomech.
,
23
(
1
), pp.
59
66
.
30.
Bell
,
A. L.
,
Pedersen
,
D. R.
, and
Brand
,
R. A.
,
1990
, “
A Comparison of the Accuracy of Several Hip Center Location Prediction Methods
,”
J. Biomech.
,
23
(
6
), pp.
617
621
.
31.
Vaughan, C. L., Davis, B. L., and O’Connor, J. C., 1992, “Dynamics of Human Gait,” Human Kinetics Publishers, Champaign, IL, p. 26.
32.
Isman
,
R. E.
, and
Inman
,
V. T.
,
1969
, “
Anthropometric Studies of the Human Foot an Ankle
,”
Bull. Prosthet. Res.
,
11
, pp.
97
129
.
33.
van den Bogert
,
A. J.
,
Smith
,
G. D.
, and
Nigg
,
B. M.
,
1994
, “
In Vivo Determination of the Anatomical Axes of the Ankle Joint Complex: An Optimization Approach
,”
J. Biomech.
,
27
(
12
), pp.
1477
1488
.
34.
de Leva
,
P.
,
1996
, “
Adjustments to Zatsiorsky-Seluyanov’s Segment Inertia Parameters
,”
J. Biomech.
,
29
(
9
), pp.
1223
1230
.
35.
Wakeling
,
J. M.
, and
Nigg
,
B. M.
,
2001
, “
Soft-Tissue Vibrations in the Quadriceps Measured With Skin Mounted Transducers
,”
J. Biomech.
,
34
(
4
), pp.
539
543
.
36.
Arnold
,
A. S.
,
Salinas
,
S.
,
Asakawa
,
D. J.
, and
Delp
,
S. L.
,
2000
, “
Accuracy of Muscle Moment Arms Estimated From MRI-Based Musculoskeletal Models of the Lower Extremity
,”
Comput. Aided Surg.
,
5
(
2
), pp.
108
119
.
37.
Arnold
,
A. S.
, and
Delp
,
S. L.
,
2001
, “
Rotational Moment Arms of the Medial Hamstrings and Adductors Vary With Femoral Geometry and Limb Position: Implications for the Treatment of Internally Rotated Gait
,”
J. Biomech.
,
34
(
4
), pp.
437
447
.
38.
Herzog
,
W.
, and
Read
,
L. J.
,
1993
, “
Lines of Action and Moment Arms of the Major Force-Carrying Structures Crossing the Human Knee Joint
,”
J. Am. Aud Soc.
,
182
(Pt 2), pp.
213
230
.
39.
Kellis
,
E.
, and
Baltzopoulos
,
V.
,
1999
, “
In Vivo Determination of the Patella Tendon and Hamstrings Moment Arms in Adult Males Using Videofluoroscopy During Submaximal Knee Extension and Flexion
,”
Clin. Biomech. (Los Angel. Calif.)
,
14
(
2
), pp.
118
124
.
40.
Klein
,
P.
,
Mattys
,
S.
, and
Rooze
,
M.
,
1996
, “
Moment Arm Length Variations of Selected Muscles Acting on Talocrural and Subtalar Joints During Movement: An in Vitro Study
,”
J. Biomech.
,
29
(
1
), pp.
21
30
.
41.
Lu
,
T. W.
, and
O’Connor
,
J. J.
,
1996
, “
Lines of Action and Moment Arms of the Major Force-Bearing Structures Crossing the Human Knee Joint: Comparison Between Theory and Experiment
,”
J. Anat.
,
189
(
3
), pp.
575
585
.
42.
Nemeth
,
G.
, and
Ohlsen
,
H.
,
1985
, “
In Vivo Moment Arm Lengths for Hip Extensor Muscles at Different Angles of Hip Flexion
,”
J. Biomech.
,
18
(
2
), pp.
129
140
.
43.
Nemeth
,
G.
, and
Ohlsen
,
H.
,
1989
, “
Moment Arms of Hip Abductor and Adductor Muscles Measured in Vivo by Computed Tomography
,”
Clin. Biomech. (Los Angel. Calif.)
,
4
, pp.
133
136
.
44.
Spoor
,
C. W.
,
van Leeuwen
,
J. L.
,
Meskers
,
C. G.
,
Titulaer
,
A. F.
, and
Huson
,
A.
,
1990
, “
Estimation of Instantaneous Moment Arms of Lower-Leg Muscles
,”
J. Biomech.
,
23
(
12
), pp.
1247
1259
.
45.
van Soest
,
A. J.
, and
Bobbert
,
M. F.
,
1993
, “
The Contribution of Muscle Properties in the Control of Explosive Movements
,”
Biol. Cybern.
,
69
(
3
), pp.
195
204
.
46.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
,
1990
, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
,
37
(
8
), pp.
757
767
.
47.
Walker
,
S. M.
, and
Schrodt
,
G. R.
,
1973
, “
Segment Lengths and Thin Filament Periods in Skeletal Muscle Fibres of the Rhesus Monkey and the Human
,”
Anat. Rec.
,
178
, pp.
63
82
.
48.
Gerritsen
,
K. G.
,
van den Bogert
,
A. J.
,
Hulliger
,
M.
, and
Zernicke
,
R. F.
,
1998
, “
Intrinsic Muscle Properties Facilitate Locomotor Control—a Computer Simulation Study
,”
Motor Control
,
2
(
3
), pp.
206
220
.
49.
Visser
,
J. J.
,
Hoogkamer
,
J. E.
,
Bobbert
,
M. F.
, and
Huijing
,
P. A.
,
1990
, “
Length and Moment Arm of Human Leg Muscles as a Function of Knee and Hip-Joint Angles
,”
Physiol. Occup. Physiol.
,
61
(
5–6
), pp.
453
460
.
50.
Kulig
,
K.
,
Andrews
,
J. G.
, and
Hay
,
J. G.
,
1984
, “
Human Strength Curves
,”
Exerc Sport Sci. Rev.
,
12
, pp.
417
466
.
51.
Sale
,
D.
,
Quinlan
,
J.
,
Marsh
,
E.
,
McComas
,
A. J.
, and
Belanger
,
A. Y.
,
1982
, “
Influence of Joint Position on Ankle Plantarflexion in Humans
,”
J. Appl. Physiol.
,
52
(
6
), pp.
1636
1642
.
52.
Marsh
,
E.
,
Sale
,
D.
,
McComas
,
A. J.
, and
Quinlan
,
J.
,
1981
, “
Influence of Joint Position on Ankle Dorsiflexion in Humans
,”
J. Appl. Physiol.
,
51
(
1
), pp.
160
167
.
53.
He
,
J.
,
Levine
,
W. S.
, and
Loeb
,
G. E.
,
1991
, “
Feedback Gains for Correcting Small Perturbations to Standing Posture
,”
IEEE Trans. Autom. Control
,
36
, pp.
322
332
.
54.
Winters
,
J. M.
, and
Stark
,
L.
,
1987
, “
Muscle Models: What is Gained and What is Lost by Varying Model Complexity
,”
Biol. Cybern.
,
55
(
6
), pp.
403
420
.
55.
Aerts
,
P.
, and
De Clercq
,
D.
,
1993
, “
Deformation Characteristics of the Heel Region of the Shod Foot During a Simulated Heel Strike: The Effect of Varying Midsole Hardness
,”
J. Sports Sci.
,
11
(
5
), pp.
449
461
.
56.
Goffe
,
W. L.
,
Ferrier
,
G. D.
, and
Rogers
,
J.
,
1994
, “
Global Optimization of Statistical Functions With Simulated Annealing
,”
J. Econometrics
,
60
, pp.
65
99
.
57.
McLean, S. G., 2001, “Quantification of in vivo Anterior Cruciate Ligament Elongation During Sidestep Cutting and Running—Implications for Non-Contact Ligament Injury,” Unpublished doctoral thesis.
58.
Reinschmidt
,
C.
,
van den Bogert
,
A. J.
,
Nigg
,
B. M.
,
Lundberg
,
A.
, and
Murphy
,
N.
,
1997
, “
Effect of Skin Movement on the Analysis of Skeletal Knee Joint Motion During Running
,”
J. Biomech.
,
30
(
7
), pp.
729
732
.
59.
Spoor
,
C. W.
, and
van Leeuwen
,
J. L.
,
1992
, “
Knee Muscle Moment Arms From MRI and From Tendon Travel
,”
J. Biomech.
,
25
(
2
), pp.
201
206
.
60.
Pandy
,
M. G.
, and
Shelburne
,
K. B.
,
1997
, “
Dependence of Cruciate-Ligament Loading on Muscle Forces and External Load
,”
J. Biomech.
,
30
(
10
), pp.
1015
1024
.
61.
Shelburne
,
K. B.
, and
Pandy
,
M. G.
,
1997
, “
A Musculoskeletal Model of the Knee for Evaluating Ligament Forces During Isometric Contractions
,”
J. Biomech.
,
30
(
2
), pp.
163
176
.
62.
Gerritsen
,
K. G.
,
Nachbauer
,
W.
, and
van den Bogert
,
A. J.
,
1996
, “
Computer Simulation of Landing Movement in Downhill Skiing: Anterior Cruciate Ligament Injuries
,”
J. Biomech.
,
29
(
7
), pp.
845
854
.
63.
Woo
,
S. L.
,
Hollis
,
J. M.
,
Adams
,
D. J.
,
Lyon
,
R. M.
, and
Takai
,
S.
,
1991
, “
Tensile Properties of the Human Femur-Anterior Cruciate Ligament-Tibia Complex. The Effects of Specimen Age and Orientation
,”
Am. J. Sports Med.
,
19
(
3
), pp.
217
225
.
64.
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Cochrane
,
J. L.
, and
Ackland
,
T. R.
,
2001
, “
External Loading of the Knee Joint During Running and Cutting Maneuvers
,”
Med. Sci. Sports Exercise
,
33
(
7
), pp.
1168
1175
.
65.
Piziali
,
R. L.
,
Rastegar
,
J.
,
Nagel
,
D. A.
, and
Schurman
,
D. J.
,
1980
, “
The Contribution of the Cruciate Ligaments to the Load-Displacement Characteristics of the Human Knee Joint
,”
J. Biomech. Eng.
,
102
(
4
), pp.
277
283
.
66.
Edman
,
K. A. P.
,
1979
, “
The Velocity of Unloaded Shortening and its Relation to Sarcomere Length and Isometric Force in Vertebrate Muscle Fibers
,”
J. Physiol. (London)
,
291
, pp.
143
159
.
67.
Petrofsky
,
J. S.
, and
Phillips
,
C. A.
,
1981
, “
The Influence of Temperature Initial Length and Electrical Activity on the Force-Velocity Relationship of the Medial Gastrocnemius Muscle of the Cat
,”
J. Biomech.
,
14
, pp.
297
306
.
68.
Hill
,
A. V.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. Royal Soc.
,
126B
, pp.
136
195
.
69.
Herzog W., 1999, “Muscle. In: Biomechanics of the Musculoskeletal System,” 2nd Edition, edited by Nigg, B. M., and Herzog, W., Wiley, New York, pp. 148–188.
70.
Chow
,
J. W.
, and
Darling
,
W. G.
,
1999
, “
The Maximum Shortening Velocity of Muscle Should be Scaled With Activation
,”
J. Appl. Physiol.
,
86
, pp.
1025
1031
.
71.
Katz
,
B.
,
1939
, “
The Relation Between Force and Speed in Muscular Contraction
,”
J. Physiol. (London)
,
96
, pp.
45
64
.
72.
Magnusson
,
S. P.
,
Aagaard
,
P.
,
Dyhre-Poulsen
,
P.
, and
Kjaer
,
M.
,
2001
, “
Load-Displacement Properties of the Human Triceps Surae Aponeurosis in Vivo
,”
J. Physiol. (London)
,
531
, pp.
277
288
.
You do not currently have access to this content.