The effectiveness of a cardiovascular stent depends on many factors, such as its ability to sustain the compression applied by the vessel wall, minimal longitudinal contraction when it is expanded, and its ability to flex when navigating tortuous blood vessels. The long-term reaction of the tissue to the stent is also device dependant; in particular some designs provoke in-stent restenosis (i.e., regrowth of the occlusion around the stent). The mechanism of restenosis is thought to involve injury or damage to the vessel wall due to the high stresses generated around the stent when it expands. Because of this, the deflection of the tissue between the struts of the stent (called prolapse or “draping”) has been used as a measure of the potential of a stent to cause restenosis. In this paper, uniaxial and biaxial experiments on human femoral artery and porcine aortic vascular tissue are used to develop a hyperelastic constitutive model of vascular tissue suitable for implementation in finite-element analysis. To analyze prolapse, four stent designs (BeStent 2, Medtronic AVE; NIROYAL, Boston Scientific; VELOCITY, Cordis; TETRA, Guidant) were expanded in vitro to determine their repeating-unit dimensions. This geometric data was used to generate a finite element model of the vascular tissue supported within a repeating-unit of the stent. Under a pressure of 450 mm Hg (representing the radial compression of the vessel wall), maximum radial deflection of 0.253 mm, 0.279 mm, 0.348 mm and 0.48 mm were calculated for each of the four stents. Stresses in the vascular wall were highest for the VELOCITY stent. The method is proposed as a way to compare stents relative to their potential for restenosis and as a basis for a biomechanical design of a stent repeating-unit that would minimize restenosis.

1.
Sigwart
,
U.
,
Puel
,
J.
,
Mirkovitch
,
V.
,
Joffre
,
F.
, and
Kappenberger
,
L.
,
1987
, “
Intravascular Stents to Prevent Occlusion and Restenosis After Transluminal Angioplasty
,”
N. Engl. J. Med.
,
316
, pp.
701
707
.
2.
Duerg
,
T.
,
Pelton
,
A.
, and
Sto¨ckel
,
D.
,
1999
, “
An Overview of Nitinol for Medical Applications
,”
Materials Science and Engineering
,
A273–275
, pp.
149
160
.
3.
Schwartz
,
R. S.
,
1998
, “
Pathophysiology of Restenosis: Interaction of Thrombosis, Hyperplasic, and/or Remodelling
,”
Am. J. Cardiol.
,
81
, pp.
14E–17E
14E–17E
.
4.
Kastrati
,
A.
,
Mehilli
,
J.
,
Dirchinger
,
J.
,
Pache
,
J.
,
Ulm
,
K.
,
Schu¨hlen
,
H.
,
Seyfarth
,
M.
,
Schmitt
,
C.
,
Blasini
,
R.
,
Neumann
,
F.-J.
, and
Scho¨mig
,
A.
,
2001
, “
Restenosis After Coronary Placement of Various Stent Types
,”
Am. J. Cardiol.
,
87
, pp.
34
39
.
5.
Edelman
,
E. R.
, and
Rogers
,
C.
,
1995
, “
Endovascular Stent Design Dictates Experimental Restenosis and Thrombosis
,”
Circulation
,
91
, pp.
2995
3001
.
6.
Dumoulin
,
C.
, and
Cochelin
,
B.
,
2000
, “
Mechanical Behavior Modelling of Balloon-Expandable Stents
,”
J. Biomech.
,
33
, pp.
1461
1470
.
7.
Whitcher
,
F. D.
,
1997
, “
Simulation of In Vivo Loading Conditions of Nitinol Vascular Stent Structures
,”
Computers and Structures
,
64
, pp.
1005
1011
.
8.
Veress
,
A. I.
,
Vince
,
D. G.
,
Anderson
,
P. M.
,
Cornhill
,
J. F.
,
Herderick
,
E. E.
,
Killingensmith
,
J. D.
,
Kuban
,
B. D.
, and
Thomas
,
J. D.
,
2000
, “
Vascular Mechanics of the Coronary Artery
,”
Z. Kardiol.
,
89
(Suppl. 2), pp.
92
100
.
9.
Rogers
,
C.
,
Tseng
,
D. Y.
,
Squire
,
J. C.
, and
Edelman
,
E. R.
,
1999
, “
Balloon-Artery Interactions During Stent Placement—A Finite-Element Analysis Approach to Pressure, Compliance, and Stent Design as Contributors to Vascular Injury
,”
Circ. Res.
,
84
, pp.
378
383
.
10.
Hayashi
,
K.
, and
Imai
,
Y.
,
1997
, “
Tensile Property of Atheromatous Plaque and an Analysis of Stress in the Artherosclerotic Wall
,”
J. Biomech.
,
30
, pp.
573
579
.
11.
Green, A. E., and Zerna, W., 1968, Theoretical Elasticity, Clarendon Press, Oxford.
12.
Carew
,
T. E.
,
Vaishnav
,
R. N.
, and
Patel
,
D. J.
,
1968
, “
Compressibility of the Vascular Wall
,”
Circ. Res.
,
27
, pp.
105
119
.
13.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
, pp.
582
592
.
14.
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Evaluation of Biological Materials
,”
Journal of Elasticity
,
61
, pp.
199
246
.
15.
Ponde
,
C. K.
,
Aroney
,
C. N.
,
McEniery
,
P. T.
, and
Bett
,
J. H. N.
,
1997
, “
Plaque Prolapse Between the Struts of the Intracoronary Palmaz-Schantz Stent
,”
Catheterization and Cardiovascular Interventions
,
40
, pp.
353
357
.
16.
Hong
,
M.-K.
,
Park
,
S.-W.
,
Lee
,
C. W.
,
Kang
,
D.-K.
,
Song
,
J.-J.
, and
Park
,
A.-J.
,
2000
, “
Long-Term Outcomes of Minor Plaque Prolapsed Within Stents Documented With Intravascular Untrasound
,”
Catheterization and Cardiovascular Interventions
,
51
, pp.
22
26
.
17.
Jang
,
I.-K.
,
Tearney
,
G.
, and
Bouma
,
B.
,
2001
, “
Visualization of Tissue Prolapse Between Coronary Stent Struts by Optical Coherence Tomography,” Comparison With Intravascular Untrasound
.
Circulation
,
104
, p.
2754
2754
.
18.
Treloar
,
L. R. G.
,
1943
, “
The Elasticity of a Network of Long-Chain Molecules
,”
Transactions of the Faraday Society
,
39
, pp.
241
246
.
19.
Truesdell
,
C. A.
,
1952
, “
The Mechanical Foundations of Elasticity and Fluid Dynamics
,”
Journal of Rational Mechanics and Analysis
,
1
, pp.
173
182
.
20.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
Journal of Elasticity
,
61
, pp.
1
48
.
21.
Burton
,
A. C.
,
1962
, “
Physical Principles of Circulatory Phenomena: The Physical Equilibria of the Heart and Blood Vessels
,”
Handbook of Physiology
,
1
(Section 2), pp.
85
106
, American Physiological Society, Washington.
22.
Beyar, R., and Serruys, P., 1999, The BeStent, In: Handbook of Coronary Stents, P. W. Serruys and M. J. B. Kutryk (Eds.), 1998 second edition, Martin Dunitz, London, p. 159.
23.
Edelman
,
E. R.
, and
Rogers
,
C.
,
1998
, “
Pathobiologic Responses to Stenting
,”
Am. J. Cardiol.
,
81
(
7A
), pp.
4E–6E
4E–6E
.
24.
Fung, Y. C., Biomechanics. Mechanical Behavior of Living Tissues, Springer, New York, NY.
25.
Holzapfel, G., 2000, In: Mechanics in Biology, eds. J. Casey and G. Bao, American Society of Mechanical Engineers, New York, NY, pp. 157–169.
26.
Truesdell
,
C. A.
,
1952
, “
The Mechanical Foundations of Elasticity and Fluid Dynamics
,”
Journal of Rational Mechanics and Analysis
,
1
, p.
182
182
.
27.
Vorp, D. A., and Wang, D. H.-J., 2000, “Use of Finite Elasticity in Abdominal Aortic Aneurysm Research,” In: Mechanics in Biology (eds. J. Casey and G. Bao), American Society of Mechanical Engineers: New York, NY, pp. 157–169.
28.
Sacks
,
M. S.
, and
Chuong
,
C.
,
1998
, “
Orthotropic Mechanical Properties of Chemically Treated Bovine Pericardium
,”
Ann. Biomed. Eng.
,
26
, pp.
892
902
.
29.
Jemiolo
,
S.
, and
Telega
,
J. J.
,
2001
, “
Transversely Isotropic Materials Undergoing Large Deformations and Application to Modelling of Soft Tissues
,”
Mech. Res. Commun.
,
28
, pp.
397
404
.
30.
Hoffmann
,
R.
,
Mintz
,
G. S.
,
Dussaillant
,
G. R.
,
Popma
,
J. J.
,
Pichard
,
A. D.
,
Salter
,
L. F.
,
Kent
,
K. M.
,
Griffin
,
J.
, and
Leon
,
M. B.
,
1996
, “
Patterns and Mechanisms of In-Stent Restenosis
,”
Circulation
,
94
, pp.
1247
1254
.
31.
Messenger
,
J. C.
,
Chen
,
S. Y. J.
,
Carroll
,
J. D.
,
Burchenal
,
J. E. B.
,
Kioussopoulos
,
K.
, and
Groves
,
B. M.
,
2000
, “
3-D Coronary Reconstruction From Routine Single-Plane Coronary Angiograms: Clinical Validation and Quantitative Analysis of the Right Coronary Artery in 100 Patients
,”
Int. J. Card. Imaging
,
16
, pp.
413
427
.
32.
Lally, C., Prendergast, P. J., Lennon, A. B., Quinn, D., and Dolan, F., 2002, “Finite-Element Analysis of Tissue Prolapse Within Intravascular Stents Calculated Using a Single Repeating Unit of a Stent and a Full 3-D Model of a Stent,” Proceedings of the 13th Conference of the European Society of Biomechanics, Wroclaw, Poland. Acta of Bioengineering and Biomechanics, 4(Suppl. 1), pp. 537–538.
You do not currently have access to this content.