This paper presents a theoretical investigation of a geometrically idealized artificial joint with micro-pocket-covered component and biphasic cartilage on the opposite articulating surface. The fluid that exudes from the biphasic cartilage fills and pressurizes the micro-pockets. In this way, a poro-elasto-hydrodynamic regime of lubrication is developed. Assuming that lower friction would result in lower adhesive wear, and neglecting the fatigue as well as the abrasive wear, the proposed bearing system hypothetically could reduce the amount of wear debris. Equations of the linear biphasic theory are applied for the confined and unconfined compression of the cartilage. The fluid pressure and the elastic deformation of the biphasic cartilage are explicitly presented. The effective and equilibrium friction coefficients are obtained for the particular configuration of this bearing system. The micro-pockets geometrical parameters (depth, radius, surface distribution and edge radius) must be established to reduce the local contact stresses, to assure low friction forces and to minimize the biphasic cartilage damage. The influence of the applied pressure, porosity of the micro-pocket-covered component, filling time, cartilage elasticity, permeability and porosity upon the micro-pockets depth is illustrated. Our results are based upon the previously published data for a biphasic cartilage.

1.
Huiskes, R., and Verdonschot, N., 1997, “Biomechanics of Artificial Joints: The Hip,” Basic Orthopaedic Biomechanics, V. C. Mow, and W. C. Hayes, eds., Lippincott-Raven, New York, pp. 395–460.
2.
Mow, V. C., and Mak, A. F., 1987, “Lubrication of Diarthrodial Joints,” Handbook of Bioengineering, R. Skalak, and S. Chien, eds., McGraw-Hill, New York, pp. 5.1–5.34.
3.
Fisher
,
J.
, and
Dowson
,
D.
,
1991
, “
Tribology of Total Artificial Joints
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
205
, pp.
73
79
.
4.
Delecrin
,
J.
,
Oka
,
M.
,
Takahashi
,
S.
,
Yamamuro
,
T.
, and
Nakamura
,
T.
,
1994
, “
Changes in Joint Fluid after Total Arthroplasty
,”
Clin. Orthop.
,
307
, pp.
240
249
.
5.
Murakami
,
T.
,
Higaki
,
H.
,
Sawae
,
Y.
,
Ohtsuki
,
N.
,
Moriyama
,
S.
, and
Nakanishi
,
Y.
,
1998
, “
Adaptive Multimode Lubrication in Natural Synovial Joints and Artificial Joints
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
212
, pp.
23
35
.
6.
Stewart
,
T.
,
Jin
,
Z. M.
, and
Fisher
,
J.
,
1997
, “
Friction of Composite Cushion Bearings for Total Knee Joint Replacements under Adverse Lubrication Conditions
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
211
, pp.
451
465
.
7.
Kennedy
,
F. E.
,
Currier
,
J. H.
,
Plumet
,
S.
,
Duda
,
J. L.
,
Gestwick
,
D. P.
,
Collier
,
J. P.
,
Currier
,
B. H.
, and
Dubourg
,
M-C.
,
2000
, “
Contact Fatigue Failure of Ultra-High Molecular Weight Polyethylene Bearing Components of Knee Prostheses
,”
ASME J. Tribol.
,
122
, pp.
332
339
.
8.
Revell
,
P. A.
,
Al-Saffar
,
N.
, and
Kobayashi
,
A.
,
1997
, “
Biological Reaction to Debris in Relation to Joint Prostheses
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
211
, pp.
187
197
.
9.
Callaghan
,
J. J.
,
Insall
,
J. N.
,
Greenwald
,
A. S.
,
Dennis
,
D. A.
,
Komisteck
,
R. D.
,
Murray
,
D. W.
,
Bourne
,
R. B.
,
Rorabeck
,
C. H.
, and
Dorr
,
L. D.
,
2000
, “
Mobile-Bearing Knee Replacement
,”
J. Bone Jt. Surg., Am. Vol.
,
82
(
7
), pp.
1020
1048
.
10.
Sathasivam
,
S.
, and
Walker
,
P. S.
,
1999
, “
The Conflicting Requirements of Laxity and Conformity in Total Knee Replacement
,”
J. Biomech.
,
32
, pp.
239
247
.
11.
Sathasivam
,
S.
,
Walker
,
P. S.
,
Campbell
,
P. A.
, and
Rayner
,
K.
,
2001
, “
The Effect of Contact Area on Wear in Relation to Fixed and Mobile Bearing Knee Replacements
,”
J. Biomed. Mater. Res.
,
58
, pp.
282
290
.
12.
Walker
,
P. S.
, and
Sathasivam
,
S.
,
2000
, “
Design Forms of Total Knee Replacement
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
214
, pp.
101
119
.
13.
Wang
,
A.
,
Essner
,
A.
,
Polineni
,
V. K.
,
Stark
,
C.
, and
Dumbleton
,
J. H.
,
1998
, “
Lubrication and Wear of Ultra-High Molecular Polyethylene in Total Joint Replacements
,”
Tribol. Int.
,
31
, pp.
17
33
.
14.
Scholes
,
S. C.
,
Unsworth
,
A.
,
Hall
,
R. M.
, and
Scoot
,
R.
,
2000
, “
The Effects of Material Combination and Lubricant on the Friction of Total Hip Prostheses
,”
Wear
,
241
, pp.
209
213
.
15.
Chan
,
F. W.
,
Bobyn
,
J. D.
,
Medley
,
J. B.
,
Krygier
,
J. J.
, and
Tanzer
,
M.
,
1999
, “
Wear and Lubrication of Metal-on-Metal Hip Implants
,”
Clin. Orthop. Relat. Res.
,
369
, pp.
10
24
.
16.
Heimke
,
G.
,
Leyen
,
S.
, and
Willmann
,
G.
,
2002
, “
Knee Arthroplasty: Recently Developed Ceramics Offer New Solutions
,”
Biomaterials
,
23
, pp.
1539
1551
.
17.
Auger, D. D., Medley, J. B., Fisher, J., and Dowson, D., 1990, “A Preliminary Investigation of the Cushion Form Bearing in Artificial Joints,” Mechanics of Coatings, D. Dowson, ed., Elsevier, Amsterdam, pp. 264–269.
18.
Auger
,
D. D.
,
Dowson
,
D.
, and
Fisher
,
J.
,
1995
, “
Cushion Form Bearing for Total Knee Joint Replacement. Part 1: Design, Friction and Lubrication
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
209
, pp.
73
81
.
19.
Caravia
,
L.
,
Dowson
,
D.
,
Fisher
,
J.
,
Corkhill
,
P. H.
, and
Tighe
,
B. J.
,
1995
, “
Friction of Hydrogel and Polyurethane Elastic Layers when Sliding Each Other Under a Mixed Lubrication Regime
,”
Wear
,
181–183
, pp.
236
240
.
20.
Kelly
,
P. A.
, and
O’Connor
,
J. J.
,
1996
, “
Transmission of Rapidly Applied Loads Through Articular Cartilage. Part 1: Uncracked Cartilage
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
210
, pp.
27
37
.
21.
Kitano
,
T.
,
Ateshian
,
G. A.
,
Mow
,
V. C.
,
Kadoya
,
Y.
, and
Yamano
,
Y.
,
2001
, “
Constituents and pH Changes in Protein Rich Hyaluronan Solution Affect the Biotribological Properties of Artificial Articular Joints
,”
J. Biomech.
,
34
, pp.
1031
1037
.
22.
Pinkus, O., and Sternlicht, B., 1961, Theory of Hydrodynamic Lubrication, McGraw-Hill, New York.
23.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
1998
, “
Experimental Verification and Theoretical Prediction of Cartilage Interstitial Fluid Pressurization at an Impermeable Contact Interface in Confined Compression
,”
J. Biomech.
,
31
, pp.
927
934
.
24.
Iwatsubo, T., Suciu, A. N., Matsuda, M., and Kurosaka, M., 2001, “Development of a Poro-Elasto Squeeze Film Lubrication Mechanism for the Artificial Knee Joint,” Proceeding of the 2001 Bioengineering Conference, Kamm et al., R. D. eds., ASME BED-Vol 50, pp. 447–448.
25.
Iwatsubo, T., Matsuda, M., Suciu, A. N., and Kurosaka, M., 2000, “A Poro-Elasto-Squeeze Film Analysis for the Artificial Knee Joint,” Proceeding of the Biotribology Satellite Forum of the International Tribology Conference Nagasaki, Fukuoka, Japan, pp. 35–38.
26.
Suciu, A. N., Iwatsubo, T., Matsuda, M., and Nishino, T., 2002, “Experimental Study of an Artificial Knee Joint with PVA-Hydrogel Cartilage,” Proceedings of the 4th World Congress of Biomechanics, Calgary, Canada, CD-ROM, p. 1.
27.
Suciu, A. N., Iwatsubo, T., Matsuda, M., and Nishino, T., 2002, “Experimental Study of an Artificial Knee Joint with Poro-Elastic-Hydrated Tibial Cartilage and Micro-Pocket-Covered Femoral Surface,” Proceedings of the Mechanical Engineering Congress, Tokyo, Japan, 02-1, pp. 43–45.
28.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
, pp.
73
84
.
29.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
106
, pp.
165
173
.
30.
Ateshian
,
G. A.
,
1997
, “
A Theoretical Formulation for Boundary Friction in Articular Cartilage
,”
ASME J. Biomech. Eng.
,
119
, pp.
81
86
.
31.
Etsion
,
I.
,
Kligerman
,
Y.
, and
Halperin
,
G.
,
1999
, “
Analytical and Experimental Investigation of Laser-Textured Mechanical Seal Faces
,”
Tribol. Trans.
,
42
, pp.
511
516
.
32.
Mak
,
A. F.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1987
, “
Biphasic Indentation of Articular Cartilage-I. Theoretical Analysis
,”
J. Biomech.
,
20
, pp.
703
714
.
33.
ISO, 1999, “Implants for Surgery-Wear of Total Knee Joint Prostheses-Part 000: Loading and Displacement Parameters for Wear Testing Machines With Displacement Control and Corresponding Environmental Conditions for Test,” ISO/WD 14243-000, pp. 1–9.
34.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
, and
Rolhmann
,
A.
,
2001
, “
Hip Contact Forces and Gait Patterns from Routine Activities
,”
J. Biomech.
,
34
, pp.
859
871
.
35.
Ateshian
,
G. A.
,
Wang
,
H.
, and
Lai
,
W. M.
,
1998
, “
The Role of Interstitial Fluid Pressurization and Surface Porosities on the Boundary Friction of Articular Cartilage
,”
ASME J. Tribol.
,
120
, pp.
241
251
.
36.
Hildebrand, F. B., 1976, Advanced Calculus for Application, 2nd ed., Prentice-Hall, New Jersey, pp. 384–417.
37.
Goldsmith
,
A. A. J.
, and
Clift
,
S. E.
,
1998
, “
Investigation into the Biphasic Properties of a Hydrogel for Use in a Cushion Form Replacement Joint
,”
ASME J. Biomech. Eng.
,
120
, pp.
362
369
.
38.
Ateshian
,
G. A.
,
Warden
,
W. H.
,
Kim
,
J. J.
,
Grelsamer
,
R. P.
, and
Mow
,
V. C.
,
1997
, “
Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage From Confined Compression Experiments
,”
J. Biomech.
,
30
, pp.
1157
1164
.
39.
Holmes
,
M. H.
, and
Mow
,
V. C.
,
1990
, “
The Non-Linear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
,
23
, pp.
1145
1156
.
40.
Stammen
,
J. A.
,
Williams
,
S.
,
Ku
,
D. N.
, and
Guldberg
,
R. E.
,
2001
, “
Mechanical Properties of a Novel PVA Hydrogel in Shear and Unconfined Compression
,”
Biomaterials
,
22
, pp.
799
806
.
41.
Ambrosio
,
L.
,
De Santis
,
R.
, and
Nicolais
,
L.
,
1998
, “
Composite Hydrogels for Implants
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
212
, pp.
93
99
.
42.
Oka
,
M.
,
Ushio
,
K.
,
Kumar
,
P.
,
Hyon
,
S. H.
,
Nakamura
,
T.
, and
Fujita
,
H.
,
2000
, “
Development of Artificial Articular Cartilage
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
214
, pp.
59
68
.
43.
Gu
,
Z. Q.
,
Xiao
,
J. M.
, and
Lou
,
S. Q.
,
1999
, “
The Mechanical-Chemical Attachment between the Artificial Articular Cartilage (PVA-hydrogel) and Metal Substrate (or Underlying Bone)
,”
Bio-Medical Materials and Engineering
,
9
, pp.
347
351
.
You do not currently have access to this content.