A 3-dimensional formulation for a poroelastic and chemical electric (PEACE) model is presented and applied to an intervertebral disc slice in a 1-dimensional validation problem and a 2-dimensional plane stress problem. The model was used to investigate the influence of fixed charge density magnitude and distribution on this slice of disc material. Results indicated that the mechanical, chemical, and electrical behaviors were all strongly influenced by the amount as well as the distribution of fixed charges in the matrix. Without any other changes in material properties, alterations in the fixed charge density (proteoglycan content) from a healthy to a degenerated distribution will cause an increase in solid matrix stresses and can affect whether the tissue imbibes or exudes fluid under different loading conditions. Disc tissue with a degenerated fixed charge density distribution exhibited greater solid matrix stresses and decreased streaming potential, all of which have implications for disc nutrition, disc biomechanics, and tissue remodeling. It was also seen that application of an electrical potential across the disc can induce fluid transport.

1.
Frymoyer
,
J. W.
, and
Cats-Baril
,
W. L.
,
1991
, “
An Overview of Incidences and Costs of Low Back Care
,”
Orthop. Clin. North Am.
,
22
, pp.
263
271
.
2.
Rutlow
,
I. M.
,
1986
, “
Orthopaedic Operations in the United States 1979–1983
,”
J. Bone Jt. Surg.
,
68A
, pp.
716
719
.
3.
Antoniou
,
J.
,
Steffen
,
T.
,
Nelson
,
F.
,
Winterbottom
,
N.
,
Hollander
,
A.
,
Poole
,
R. A.
,
Aebi
,
M.
, and
Alini
,
M.
,
1996
, “
The Human Lumbar Disc: Evidence for Changes in the Biosynthesis and Denaturation of the Extracellular Matrix with Growth, Maturation, Ageing, and Degeneration
,”
J. Clin. Invest.
,
98
, pp.
996
1003
.
4.
Lyons
,
G.
,
Eisenstein
,
S.
, and
Sweet
,
M.
,
1981
, “
Biochemical Changes in Intervertebral Disc Degeneration
,”
Biochim. Biophys. Acta
,
673
, pp.
443
453
.
5.
Urban, J. P. G., and Holm, S. H., 1986, “Intervertebral Disc Nutrition as Related to Spinal Movements and Fusion,” Tissue Nutrition and Viability, Edited by AR Hargens, New York, NY, Springer-Verlag, pp. 101–119.
6.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Rawlins
,
B. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1998
, “
Degeneration Affects the Anisotropic and Nonlinear Behaviors of Human Anulus Fibrosus in Compression
,”
J. Biomech.
,
31
, pp.
535
544
.
7.
Nachemson
,
A.
,
1960
, “
Lumbar Intradiscal Pressure
,”
Acta Orthop. Scand. Suppl.
,
43
, pp.
1
104
.
8.
Panjabi
,
M.
,
Brown
,
M.
,
Lindahl
,
S.
,
Irstam
,
L.
, and
Hermens
,
M.
,
1988
, “
Intrinsic Disc Pressure as a Measure of Integrity of the Lumbar Spine
,”
Spine
,
13
, pp.
913
917
.
9.
Urban
,
J. P. G.
, and
McMullin
,
J. F.
,
1988
, “
Swelling Pressure of the Lumbar Intervertebral Discs: Influence of Age, Spinal Level, Composition, and Degeneration
,”
Spine
,
13
,
179
187
.
10.
Gu
,
W. Y.
,
Mao
,
X. G.
,
Rawlins
,
B. A.
,
Iatridis
,
J. C.
,
Foster
,
R. J.
,
Sun
,
D. N.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1999
, “
Streaming Potential of Human Lumbar Anulus Fibrosus is Anisotropic and Affected by Disc Degeneration
,”
J. Biomech.
,
32
, pp.
1177
1182
.
11.
Gu
,
W. Y.
,
Mao
,
X. G.
,
Foster
,
R. J.
,
Weidenbaum
,
M.
,
Mow
,
V. C.
, and
Rawlins
,
B. A.
,
1999
, “
The Anisotropic Hydraulic Permeability of Human Lumbar Anulus Fibrosus. Influence of Age, Degeneration, Direction, and Water Content
,”
Spine
,
24
, pp.
2449
2455
.
12.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
1987
, “
Cartilage Electromechanics. I. Electrokinetic Transduction and the Effect of Electrolyte pH and Ionic Strength
,”
J. Biomech.
,
20
, pp.
615
627
.
13.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
1987
, “
Cartilage Electromechanics. II. A Continuum Model of Cartilage Electrokinetics and Correlation with Experiments
,”
J. Biomech.
,
20
, pp.
629
639
.
14.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1993
, “
Transport of Fluid and Ions Through a Porous-permeable Charged-hydrated Tissue and Streaming Potential Data on Normal Bovine Articular Cartilage
,”
J. Biomech.
,
26
, pp.
709
723
.
15.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behavior of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
, pp.
245
258
.
16.
Maroudas, A., 1979, “Physicochemical Properties of Articular Cartilage,” Adult Articular Cartilage, Edited by Freeman MAR, Kent, U.K., Pitman Medical, pp. 215–290.
17.
Urban
,
J. P. G.
,
Maroudas
,
A.
,
Bayliss
,
M. T.
, and
Dillon
,
J.
,
1979
, “
Swelling Pressures of Proteoglycans at the Concentrations Found in Cartilaginous Tissues
,”
Biorheology
,
16
, pp.
447
464
.
18.
Argoubi
,
M.
, and
Shirazi-Adl
,
A.
,
1996
, “
Poroelastic Creep Response Analysis of a Lumbar Motion Segment in Compression
,”
J. Biomech.
,
29
, pp.
1331
1339
.
19.
Best
,
B. A.
,
Guilak
,
F.
,
Setton
,
L. A.
,
Zhu
,
W.
,
Saed-Nejad
,
F.
,
Radcliffe
,
A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1994
, “
Compressive Mechanical Properties of the Human Annulus Fibrosus and Their Relationship to Biochemical Composition
,”
Spine
,
19
, pp.
212
221
.
20.
Frijns
,
A. J. H.
,
Huyghe
,
J. M.
, and
Janssen
,
J. D.
,
1997
, “
A Validation of the Quadriphasic Mixture Theory for Intervertebral Disc Tissue
,”
Int. J. Eng. Sci.
,
35
, pp.
1419
1429
.
21.
Laible
,
J. P.
,
Pflaster
,
D.
,
Krag
,
M. H.
,
Simon
,
B. R.
, and
Haugh
,
L. D.
,
1993
, “
A Poroelastic-swelling Finite Element Model with Application to the Intervertebral Disc
,”
Spine
,
18
, pp.
659
670
.
22.
Laible
,
J. P.
,
Pflaster
,
D.
,
Simon
,
B. R.
,
Krag
,
M. H.
,
Pope
,
M. H.
, and
Haugh
,
L. D.
,
1994
, “
A Dynamic Material Parameter Estimation Procedure for Soft Tissue Using a Poroelastic Finite Element Model
,”
ASME J. Biomech. Eng.
,
116
, pp.
19
29
.
23.
Simon
,
B. R.
,
Wu
,
J. S.
,
Carlton
,
M. W.
,
Evans
,
J. H.
, and
Kazarian
,
L. E.
,
1985
, “
Structural Models for Human Spinal Motion Segments Based on a Poroelastic View of the Intervertebral Disc
,”
ASME J. Biomech. Eng.
,
107
, pp.
327
335
.
24.
Snijders
,
H.
,
Huyghe
,
J. M.
, and
Janssen
,
J. D.
,
1995
, “
Triphasic Finite Element Model for Swelling of Porous Media
,”
Int. J. Numer. Methods Fluids
,
20
, pp.
1039
1046
.
25.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1997
, “
Alterations in the Mechanical Behavior of the Human Lumbar Nucleus Pulposus with Degeneration and Aging
,”
J. Orthop. Res.
,
15
, pp.
318
322
.
26.
Biot
,
M. A.
,
1962
, “
Mechanics of Deformation and Acoustic Propagation in Porous Media
,”
J. Appl. Phys.
,
33
, pp.
1482
1498
.
27.
Biot
,
M. A.
,
1972
, “
Theory of Finite Deformation of Porous Soils
,”
Indiana Univ. Math. J.
,
21
, pp.
597
620
.
28.
Simon
,
B. R.
,
1992
, “
Multi-phase Poroelastic Finite Element Models for Soft Tissue Structures
,”
Appl. Mech. Rev.
,
45
, pp.
191
219
.
29.
Simon
,
B. R.
,
Laible
,
J. P.
,
Pflaster
,
D.
,
Yuan
,
Y.
, and
Krag
,
M.
,
1996
, “
A Poroelastic Finite Element Formulation Including Transport Swelling in Soft Tissue Structures
,”
ASME J. Biomech. Eng.
,
118
, pp.
1
9
.
30.
Sun
,
D. N.
,
Gu
,
W. Y.
,
Guo
,
X. E.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1999
, “
A Mixed Finite Element Formulation of Triphasic Mechano-electrochemical Theory for Charged, Hydrated Biological Soft Tissues
,”
Int. J. Numer. Methods Eng.
,
45
, pp.
1375
1402
.
31.
Huyghe
,
J. M.
, and
Janssen
,
J. D.
,
1997
, “
Quadriphasic Mechanics of Swelling Incompressible Porous Media
,”
Int. J. Eng. Sci.
,
35
, pp.
793
802
.
32.
Drost
,
M. R.
,
Willems
,
P.
,
Snijders
,
H.
,
Huyghe
,
J. M.
,
Janssen
,
J. D.
, and
Huson
,
A.
,
1995
, “
Confined Compression of Canine Annulus Fibrosus Under Chemical and Mechanical Loads
,”
ASME J. Biomech. Eng.
,
117
, pp.
390
396
.
33.
Urban
,
J. P. G.
,
Holm
,
S.
,
Maroudas
,
A.
, and
Nachemson
,
A.
,
1982
, “
Nutrition of the Intervertebral Disc: Effect of Fluid Flow on Solute Transport
,”
Clin. Orthop. Relat. Res.
,
170
, pp.
296
302
.
34.
Keller
,
T.
,
Spengler
,
D.
, and
Hansson
,
T.
,
1987
, “
Mechanical Behavior of the Human Lumbar Spine. I. Creep Analysis During Static Compressive Loading
,”
J. Orthop. Res.
,
5
, pp.
467
478
.
35.
Holm
,
S.
,
Maroudas
,
A.
,
Urban
,
J. P. G.
,
Selstam
,
G.
, and
Nachemson
,
A.
,
1981
, “
Nutrition of the Intervertebral Disc: Solute Transport and Metabolism
,”
Connect. Tissue Res.
,
8
, pp.
101
119
.
36.
Elliott
,
D. M.
, and
Setton
,
L. A.
,
2001
, “
Anisotropic and Inhomogeneous Tensile Behavior of the Human Anulus Fibrosus: Experimental Measurement and Material Model Predictions
,”
ASME J. Biomech. Eng.
,
23
, pp.
256
263
.
37.
Acaroglu
,
E.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
,
1995
, “
Degeneration and Aging Affect the Tensile Behavior of Human Lumbar Annulus Fibrosus
,”
Spine
,
20
, pp.
2690
2701
.
38.
Galante
,
J.
,
1967
, “
Tensile Properties of the Human Lumbar Anulus Fibrosus
,”
Acta Orthop. Scand.
,
100
, pp.
68
82
.
39.
Kraemer
,
J.
,
Kolditz
,
D.
, and
Gowin
,
R.
,
1985
, “
Water and Electrolyte Content of Human Intervertebral Discs Under Variable Load
,”
Spine
,
10
, pp.
69
71
.
40.
Krag
,
M.
,
Seroussi
,
R.
,
Wilder
,
D.
, and
Pope
,
M.
,
1987
, “
Internal Displacement Distribution from in Vitro Loading of Human Thoracic and Lumbar Spinal Motion Segments: Experimental Results and Theoretical Predictions
,”
Spine
,
12
, pp.
1001
1007
.
You do not currently have access to this content.