Understanding cardiac blood flow patterns is important in the assessment of cardiovascular function. Three-dimensional flow and relative pressure fields within the human left ventricle are demonstrated by combining velocity measurements with computational fluid mechanics methods. The velocity field throughout the left atrium and ventricle of a normal human heart is measured using time-resolved three-dimensional phase-contrast MRI. Subsequently, the time-resolved three-dimensional relative pressure is calculated from this velocity field using the pressure Poisson equation. Noninvasive simultaneous assessment of cardiac pressure and flow phenomena is an important new tool for studying cardiac fluid dynamics.

1.
Thomas
,
J. D.
, and
Weyman
,
A. E.
,
1992
, “
Numerical Modeling of Ventricular Filling
,”
Ann. Biomed. Eng.
,
20
, pp.
19
39
.
2.
Taylor
,
T. W.
, and
Yamaguchi
,
T.
,
1995
, “
Flow Patterns in Three-Dimensional Left Ventricular Systolic and Diastolic Flows Determined From Computational Fluid Dynamics
,”
Biorheology
,
32
, pp.
61
71
.
3.
Peskin
,
C. S.
, and
McQueen
,
D. M.
,
1992
, “
Cardiac Fluid Dynamics
,”
Crit. Rev. Biomed. Eng.
,
20
, pp.
451
459
.
4.
Durand
,
E. P.
,
Jolivet
,
O.
,
Itti
,
E.
,
Tasu
,
J. P.
, and
Bittoun
,
J.
,
2001
, “
Precision of Magnetic Resonance Velocity and Acceleration Measurements: Theoretical Issues and Phantom Experiments
,”
J. Magn. Reson Imaging
,
13
, pp.
445
451
.
5.
Lingamneni
,
A.
,
Hardy
,
P.
,
Powell
,
K.
,
Pelc
,
N.
, and
White
,
R.
,
1995
, “
Validation of Cine Phase-Contrast MR Imaging for Motion Analysis
,”
J. Magn. Reson Imaging
,
5
, pp.
331
338
.
6.
Nordell
,
B.
,
Sta˚hlberg
,
F.
,
Ericsson
,
A.
, and
Ranta
,
C.
,
1988
, “
A Rotating Phantom for the Study of Flow Effects in MR Imaging
,”
Magn. Reson. Imaging
,
6
, pp.
695
705
.
7.
Kim
,
W. Y.
,
Walker
,
P. G.
,
Pedersen
,
E. M.
,
Poulsen
,
J. K.
,
Oyre
,
S.
,
Houlind
,
K.
, and
Yoganathan
,
A. P.
,
1995
, “
Left Ventricular Blood Flow Patterns in Normal Subjects: A Quantitative Analysis by Three-Dimensional Magnetic Resonance Velocity Mapping
,”
J. Am. Coll. Cardiol.
,
26
, pp.
224
238
.
8.
Fyrenius
,
A.
,
Wigstro¨m
,
L.
,
Bolger
,
A. F.
,
Ebbers
,
T.
,
O¨hman
,
K. P.
,
Karlsson
,
M.
,
Wranne
,
B.
, and
Engvall
,
J.
,
1999
, “
Pitfalls in Doppler Evaluation of Diastolic Function: Insights From Three-Dimensional Magnetic Resonance Imaging
,”
J. Am. Soc. Echocardiogr
,
12
, pp.
817
826
.
9.
Fyrenius
,
A.
,
Wigstro¨m
,
L.
,
Ebbers
,
T.
,
Karlsson
,
M.
,
Engvall
,
J.
, and
Bolger
,
A. F.
,
2001
, “
Three Dimensional Flow in the Human Left Atrium
,”
Heart
,
86
, pp.
448
455
.
10.
Ebbers
,
T.
,
Wigstro¨m
,
L.
,
Bolger
,
A. F.
,
Engvall
,
J.
, and
Karlsson
,
M.
,
2001
, “
Estimation of Relative Cardiovascular Pressures Using Time-Resolved Three-Dimensional Phase Contrast MRI
,”
Magn. Reson. Med.
,
45
, pp.
872
879
.
11.
Song
,
S. M.
,
Leahy
,
R. M.
,
Boyd
,
D. P.
,
Brundage
,
B. H.
, and
Napel
,
S.
,
1994
, “
Determining Cardiac Velocity Fields and Intraventricular Pressure Distribution From a Sequence of Ultrafast CT Cardiac Images
,”
IEEE Trans. Med. Imaging
,
13
, pp.
386
397
.
12.
Yang
,
G. Z.
,
Kilner
,
P. J.
,
Wood
,
N. B.
,
Underwood
,
S. R.
, and
Firmin
,
D. N.
,
1996
, “
Computation of Flow Pressure Fields From Magnetic Resonance Velocity Mapping
,”
Magn. Reson. Med.
,
36
, pp.
520
526
.
13.
Tyszka
,
J. M.
,
Laidlaw
,
D. H.
,
Asa
,
J. W.
, and
Silverman
,
J. M.
,
2000
, “
Three-Dimensional, Time-Resolved (4D) Relative Pressure Mapping Using Magnetic Resonance Imaging
,”
J. Magn. Reson Imaging
,
12
, pp.
321
329
.
14.
Wigstro¨m
,
L.
,
Ebbers
,
T.
,
Fyrenius
,
A.
,
Karlsson
,
M.
,
Engvall
,
J.
,
Wranne
,
B.
, and
Bolger
,
A. F.
,
1999
, “
Particle Trace Visualization of Intracardiac Flow Using Time Resolved 3D Phase Contrast MRI
,”
Magn. Reson. Med.
,
41
, pp.
793
799
.
15.
Wigstro¨m
,
L.
,
Sjo¨qvist
,
L.
, and
Wranne
,
B.
,
1996
, “
Temporally Resolved 3D Phase-Contrast Imaging
,”
Magn. Reson. Med.
,
36
, pp.
800
803
.
16.
Knutsson, H., and Westin, C. F., 1993, “Normalized and Differential Convolution: Methods for Interpolation and Filtering of Incomplete and Uncertain Data,” presented at IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York.
17.
Irarrazabal
,
P.
, and
Nishimura
,
D. G.
,
1995
, “
Fast Three Dimensional Magnetic Resonance Imaging
,”
Magn. Reson. Med.
,
33
, pp.
656
662
.
18.
Madore
,
B.
,
Fredrickson
,
J. O.
,
Alley
,
M. T.
, and
Pelc
,
N. J.
,
2000
, “
A Reduced Field-of-View Method to Increase Temporal Resolution or Reduce Scan Time in Cine MRI
,”
Magn. Reson. Med.
,
43
, pp.
549
558
.
19.
Bernstein
,
M.
,
Zhou
,
X.
,
Polzin
,
J.
,
King
,
K.
,
Ganin
,
A.
,
Pelc
,
N.
, and
Glover
,
G.
,
1998
, “
Concomitant Gradient Terms in Phase Contrast MR: Analysis and Correction
,”
Magn. Reson. Med.
,
39
, pp.
300
308
.
20.
Pelc
,
N. J.
,
Sommer
,
F. G.
,
Li
,
K. C.
,
Brosnan
,
T. J.
,
Herfkens
,
R. J.
, and
Enzmann
,
D. R.
,
1994
, “
Quantitative Magnetic Resonance Flow Imaging
,”
Magn. Reson. Q.
,
10
, pp.
125
147
.
21.
Panton, R. L., 1984, Incompressible flow, John Wiley and Sons, New York.
22.
Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., 1984, Computational Fluid Mechanics and Heat Transfer, Hemisphere, Washington DC.
23.
Gresho
,
P. M.
, and
Sani
,
R. L.
,
1987
, “
On Pressure Boundary Conditions for the Incompressible Navier-Stokes Equations
,”
Int. J. Numer. Methods Fluids
,
7
, pp.
1111
1145
.
24.
Anderson, J. D., 1995, Computational Fluid Dynamics, McGraw-Hill, New York.
25.
Golub, G. H., and Van Loan, C. F., 1996, Matrix Computations, The John Hopkins University Press, Baltimore, MD.
26.
Sarnoff
,
S. J.
,
Gilmore
,
J. P.
, and
Mitchel
,
J. H.
,
1962
, “
Influence of Atrial Contraction and Relaxation on Closure of Mitral Valve. Observations on Effect of Autonomic Nerve Activity
,”
Circ. Res.
,
11
, pp.
26
35
.
27.
Noble
,
M. I.
,
1968
, “
The Contribution of Blood Momentum to Left Ventricular Ejection in the Dog
,”
Circ. Res.
,
23
, pp.
663
670
.
28.
Falsetti
,
H. L.
,
Verani
,
M. S.
,
Chen
,
C. J.
, and
Cramer
,
J. A.
,
1980
, “
Regional Pressure Differences in the Left Ventricle
,”
Cathet. Cardiovasc. Diagn.
,
6
, pp.
123
134
.
29.
Courtois
,
M.
,
Kova´cs
, Jr.,
S. J.
, and
Ludbrook
,
P. A.
,
1988
, “
Transmitral Pressure-Flow Velocity Relation; Importance of Regional Pressure Gradients in the Left Ventricle During Diastole
,”
Circulation
,
78
, pp.
661
671
.
30.
Courtois
,
M.
,
Kova´cs
, Jr.,
S. J.
, and
Ludbrook
,
P. A.
,
1990
, “
Physiological Early Diastolic Intraventricular Pressure Gradient is Lost During Acute Myocardial Ischemia
,”
Circulation
,
81
, pp.
1688
1696
.
31.
Nikolic
,
S. D.
,
Feneley
,
M. P.
,
Pajaro
,
O. E.
,
Rankin
,
J. S.
, and
Yellin
,
E. L.
,
1995
, “
Origin of Regional Pressure Gradients in the Left Ventricle During Early Diastole
,”
Am. J. Physiol.
,
268
, pp.
H550–H557
H550–H557
.
32.
Smiseth
,
O. A.
,
Steine
,
K.
,
Sandbæk
,
G.
,
Stugaard
,
M.
, and
Gjølberg
,
T.
,
1998
, “
Mechanics of Intraventricular Filling: Study of LV Early Diastolic Pressure Gradients and Flow Velocities
,”
Am. J. Physiol.
,
275
, pp.
H1062–H1069
H1062–H1069
.
33.
Bellhouse
,
B. J.
, and
Bellhouse
,
F. H.
,
1969
, “
Fluid Mechanics of the Mitral Valve
,”
Nature (London)
,
224
, pp.
615
616
.
34.
Reul
,
H.
,
Talukder
,
N.
, and
Mu¨ller
,
E. W.
,
1981
, “
Fluid Mechanics of the Natural Mitral Valve
,”
J. Biomech.
,
14
, pp.
361
372
.
35.
Yellin
,
E. L.
,
Peskin
,
C.
,
Yoran
,
C.
,
Koenigsberg
,
M.
,
Matsumoto
,
M.
,
Laniado
,
S.
,
McQueen
,
D.
,
Shore
,
D.
, and
Frater
,
R. W.
,
1981
, “
Mechanisms of Mitral Valve Motion During Diastole
,”
Am. J. Physiol.
,
241
, pp.
H389–H400
H389–H400
.
36.
Ebbers, T., 2001, “Cardiovascular Fluid Dynamics—Methods for Flow and Pressure Field Analysis From Magnetic Resonance Imaging,” Linko¨ping Studies in Science and Technology Dissertations, No. 690, Linko¨ping University, Linko¨ping, Sweden.
37.
Averbuch
,
A.
,
Israeli
,
M.
, and
Vozovoi
,
L.
,
1998
, “
A Fast Poisson Solver of Arbitrary Order Accuracy in Rectangular Regions
,”
SIAM J. Sci. Comput. (USA)
,
19
, pp.
933
952
.
38.
Kuo
,
C.-C. J.
, and
Levy
,
B. C.
,
1990
, “
Discretization and Solution of Elliptic PDEs—A Digital Signal Processing Approach
,”
Proc. IEEE
,
78
, pp.
1808
1842
.
You do not currently have access to this content.