A finite element method to simulate the formation of an interconnected trabecular bone microstructure oriented with respect to applied in vivo mechanical forces is introduced and quantitatively compared to experimental data from a hydraulic bone chamber implant model. Randomly located 45 μm mineralized nodules were used as the initial condition for the model simulations to represent an early stage of intramembranous bone formation. Boundary conditions were applied consistent with the mechanical environment provided by the in vivo bone chamber model. A two-dimensional repair simulation algorithm that incorporated strain energy density (SED), SED gradient, principal strain, or principal strain gradient as the local objective criterion was utilized to simulate the formation of an oriented trabecular bone microstructure. The simulation solutions were convergent, unique, and relatively insensitive to the assumed initial distribution of mineralized nodules. Model predictions of trabecular bone morphology and anisotropy were quantitatively compared to experimental results. All simulations produced structures that qualitatively resembled oriented trabecular bone. However, only simulations utilizing a gradient objective criterion yielded results quantitatively similar to in vivo observations. This simulation approach coupled with an experimental model that delivers controlled in vivo mechanical stimuli can be utilized to study the relationship between physical factors and microstructural adaptation during bone repair.

1.
Lanyon
,
L. E.
, and
Rubin
,
C. T.
,
1984
, “
Static Vs Dynamic Loads as an Influence on Bone Remodelling
,”
J. Biomech.
,
17
, No.
12
, pp.
897
905
.
2.
Turner
,
C. H.
,
Forwood
,
M. R.
,
Rho
,
J. Y.
, and
Yoshikawa
,
T.
,
1994
, “
Mechanical Loading Thresholds for Lamellar and Woven Bone Formation
,”
J. Bone Miner. Res.
,
9
, No.
1
, pp.
87
97
.
3.
Guldberg
,
R. E.
,
Caldwell
,
N. J.
,
Guo
,
X. E.
,
Goulet
,
R. W.
,
Hollister
,
S. J.
, and
Goldstein
,
S. A.
,
1997
, “
Mechanical Stimulation of Tissue Repair in the Hydraulic Bone Chamber
,”
J. Bone Miner. Res.
,
12
, No.
8
, pp.
1295
1302
.
4.
Gross
,
T. S.
,
Edwards
,
J. L.
,
McLeod
,
K. J.
, and
Rubin
,
C. T.
,
1997
, “
Strain Gradients Correlate With Sites of Periosteal Bone Formation
,”
J. Bone Miner. Res.
,
12
, No.
6
, pp.
982
988
.
5.
Judex
,
S.
,
Gross
,
T. S.
, and
Zernicke
,
R. F.
,
1997
, “
Strain Gradients Correlate With Sites of Exercise-Induced Bone-Forming Surfaces in the Adult Skeleton
,”
J. Bone Miner. Res.
,
12
, No.
10
, pp.
1737
1745
.
6.
Fyhrie
,
D. P.
, and
Carter
,
D. R.
,
1986
, “
A Unifying Principle Relating Stress to Trabecular Bone Morphology
,”
J. Orthop. Res.
,
4
, No.
3
, pp.
304
317
.
7.
Carter
,
D. R.
,
Fyhrie
,
D. P.
, and
Whalen
,
R. T.
,
1987
, “
Trabecular Bone Density and Loading History: Regulation of Connective Tissue Biology by Mechanical Energy
,”
J. Biomech.
,
20
, No.
8
, pp.
785
794
.
8.
Huiskes
,
R. H.
,
Weinans
,
H.
,
Grootenboer
,
H. J.
,
Dalstra
,
M.
,
Fudala
,
B.
, and
Sloof
,
T. J.
,
1987
, “
Adaptive Bone-Remodeling Theory Applied to Prothestic-Design Analysis
,”
J. Biomech.
,
20
, No.
11/12
, pp.
1135
1150
.
9.
Harrigan
,
T. P.
, and
Hamilton
,
J. J.
,
1994
, “
Bone Remodeling and Structural Optimization
,”
J. Biomech.
,
27
, No.
3
, pp.
323
328
.
10.
Fisher
,
K. J.
,
Jacobs
,
C. R.
,
Levenston
,
M. E.
, and
Carter
,
D. R.
,
1996
, “
Different Loads Can Produce Similar Bone Density Distributions
,”
Bone
,
19
, No.
2
, pp.
127
135
.
11.
Turner
,
C. H.
,
Anne
,
V.
, and
Pidaparti
,
R. M.
,
1997
, “
A Uniform Strain Criterion for Trabecular Bone Adaptation: Do Continuum-Level Strain Gradients Drive Adaptation
,”
J. Biomech.
,
30
, No.
6
, pp.
555
563
.
12.
Brown
,
T. D.
,
Pederson
,
D. R.
,
Gray
,
M. L.
,
Brand
,
R. A.
, and
Rubin
,
C. T.
,
1990
, “
Toward an Identification of Mechanical Parameters Initiating Periosteal Remodeling: A Combined Experimental and Analytical Approach
,”
J. Biomech.
,
23
, No.
9
, pp.
893
905
.
13.
Carter
,
D. R.
,
Blenman
,
P. R.
, and
Beaupre´
,
G. S.
,
1988
, “
Correlations Between Mechanical Stress History and Tissue Differentiation in Initial Fracture Healing
,”
J. Orthop. Res.
,
6
, No.
5
, pp.
736
748
.
14.
Mullender
,
M. G.
,
Huiskes
,
R.
, and
Weinans
,
H.
,
1994
, “
A Physiological Approach to the Simulation of Bone Remodeling as a Self-Organizational Control Process
,”
J. Biomech.
,
27
, No.
11
, pp.
1389
1394
.
15.
Mullender
,
M. G.
, and
Huiskes
,
R.
,
1997
, “
Osteocytes and Bone Lining Cells: Which Are the Best Candidates for Mechano-Sensors in Cancellous Bone
,”
Bone
,
20
, No.
6
, pp.
527
532
.
16.
Smith
,
T. S.
,
Martin
,
R. B.
,
Hubbard
,
M.
, and
Bay
,
B. K.
,
1997
, “
Surface Remodeling of Trabecular Bone Using a Tissue Level Model
,”
J. Orthop. Res.
,
15
, pp.
593
600
.
17.
Weinans
,
H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
,
1992
, “
The Behavior of Adaptive Bone-Remodeling Simulation Models
,”
J. Biomech.
,
25
, No.
12
, pp.
1425
1441
.
18.
Guldberg
,
R. E.
,
Goldstein
,
S. A.
,
Hollister
,
S. J.
, and
Caldwell
,
N. J.
,
1996
, “
Mechanical Loading Effects on Extracellular Matrix Organization and Mineral Content During Trabecular Bone Formation
,”
Trans. 42nd Annu. Meet. — Orthop. Res. Soc.
21
, No.
1
, p.
130
130
.
19.
Kreyszig, E., 1993, in: Advanced Engineering Mathematics, 7th ed., Wiley, New York.
20.
Owan
,
I.
,
Burr
,
D. B.
,
Turner
,
C. H.
,
Qiu
,
J.
,
Tu
,
Y.
,
Onyia
,
J. E.
, and
Duncan
,
R. L.
,
1997
, “
Mechanotransduction in Bone: Osteoblasts are More Responsive to Fluid Forces than Mechanical Strain
,”
Am. J. Physiol.
,
273
, No.
3
, Pt. 1, pp.
C810–C815
C810–C815
.
21.
Jacobs
,
C. R.
,
Yellowley
,
C. E.
,
Davis
,
B. R
,
Zhou
,
Z.
,
Cimbala
,
J. M.
, and
Donahue
,
H. J.
,
1998
, “
Differential Effect of Steady Versus Oscillating Flow on Bone Cells
,”
J. Biomech.
,
31
, No.
11
, pp.
969
976
.
You do not currently have access to this content.