A two-dimensional flexible channel model of the vocal folds coupled with an unsteady one-dimensional flow model is presented for an analysis of the mechanism of phonation. The vocal fold is approximated by springs and dampers distributed in the main flow direction that are enveloped with an elastic cover. In order to approximate three-dimensional collision of the vocal folds using the two-dimensional model, threshold values for the glottal width are introduced. The numerical results show that the collision plays an important role in speech sound, especially for higher resonant frequency components, because it causes the source sound to include high-frequency components.
Issue Section:
Technical Papers
1.
Ishizaka
, K.
, and Flanagan
, J. L.
, 1972
, “Synthesis of Voiced Sounds From a Two-Mass Model of the Vocal Cords
,” Bell Syst. Tech. J.
, 51
, pp. 1233
–1268
.2.
van den Berg
, Jw.
, Zantema
, J. T.
, and Doornenbal
, P.
, 1957
, “On the Air Resistance and the Bernoulli Effect of the Human Larynx
,” J. Acoust. Soc. Am.
, 29
, pp. 626
–631
.3.
Story
, B. H.
, and Titze
, I. R.
, 1997
, “Voice Simulation With a Body-Cover Model of the Vocal Folds
,” J. Acoust. Soc. Am.
, 97
, pp. 1249
–1260
.4.
Koizumi
, T.
, Taniguchi
, S.
, and Hiromitsu
, S.
, 1987
, “Two-Mass Models of the Vocal Cords for Natural Sounding Voice Synthesis
,” J. Acoust. Soc. Am.
, 82
, pp. 1179
–1192
.5.
Pelorson
, X.
, Hirschberg
, A.
, van Hassel
, R. R.
, and Wijnanads
, A. P.
, 1994
, “Theoretical and Experimental Study of Quasisteady-Flow Separation Within the Glottis During Phonation. Application to a Modified Two-Mass Model
,” J. Acoust. Soc. Am.
, 96
, pp. 3416
–3431
.6.
Titze
, I. R.
, 1973
, “The Human Vocal Cords: A Mathematical Model Part I
,” Phonetica
, 28
, pp. 129
–170
.7.
Wong
, D.
, Ito
, M. R.
, and Nicol
, T.
, 1987
, “Simulation of Vocal Fold Oscillation Using a Lumped Mass-Spring Approach
,” Int. J. Model. Simulat.
, 7
, pp. 62
–67
.8.
Titze
, I. R.
, and Talkin
, T.
, 1979
, “A Theoretical Study of the Effects of Various Laryngeal Configurations on the Acoustic of Phonation
,” J. Acoust. Soc. Am.
, 66
, pp. 60
–74
.9.
Kagawa
, Y.
, Yamabuchi
, T.
, and Shimoyama
, R.
, 1982
, “Finite Element Simulation of Vocal Cords Oscillation [in Japanese]
,” Simulation
, 1
, pp. 106
–112
.10.
Kamm
, R. D.
, and Pedley
, T. J.
, 1989
, “Flow in Collapsible Tubes: A Brief Review
,” ASME J. Biomech. Eng.
, 111
, pp. 177
–179
.11.
Pedley
, T. J.
, and Luo
, X. Y.
, 1998
, “Modelling Flow and Oscillations in Collapsible Tubes
,” Theor. Comput. Fluid Dyn.
, 10
, pp. 277
–294
.12.
Conrad
, W. A.
, 1980
, “A New Model of the Vocal Cords Based on a Collapsible Tube Analogy
,” Med. Res. Eng.
, 13
, pp. 7
–10
.13.
Berke
, G. S.
, Green
, D. C.
, Smith
, M. E.
, Arnstein
, D. P.
, and Conrad
, W. A.
, 1991
, “Experimental Evidence in the in Vivo Canine for the Collapsible Tube Model of Phonation
,” J. Acoust. Soc. Am.
, 89
, pp. 1358
–1363
.14.
Matsuzaki
, Y.
, and Matsumoto
, T.
, 1989
, “Flow in a Two-Dimensional Collapsible Channel With Rigid Inlet and Outlet
,” ASME J. Biomech. Eng.
, 111
, pp. 180
–184
.15.
Matsuzaki
, Y.
, Ikeda
, T.
, Kitagawa
, T.
, and Sakata
, S.
, 1994
, “Analysis of Flow in a Two-Dimensional Collapsible Channel Using Universal ‘Tube’ Law
,” ASME J. Biomech. Eng.
, 116
, pp. 469
–476
.16.
Ikeda
, T.
, Matsuzaki
, Y.
, and Sasaki
, T.
, 1994
, “Separated Flow in a Channel With an Oscillating Constriction (Numerical Analysis and Experiment) [in Japanese]
,” JSME Int. J., Ser. B
, 60
, pp. 750
–757
.17.
Ikeda
, T.
, and Matsuzaki
, Y.
, 1999
, “A One-Dimensional Unsteady Separable and Reattachable Flow Model for Collapsible Tube-Flow Analysis
,” ASME J. Biomech. Eng.
, 121
, pp. 153
–159
.18.
Matsuzaki
, Y.
, Ikeda
, T.
, Matsumoto
, T.
, and Kitagawa
, T.
, 1998
, “Experiments on Steady and Oscillatory Flows at Moderate Reynolds Numbers in a Quasi-Two-Dimensional Channel With a Throat
,” ASME J. Biomech. Eng.
, 120
, pp. 594
–601
.19.
Ikeda
, T.
, and Matsuzaki
, Y.
, 1994
, “Synthesis of Voiced Sound With a One-Dimensional Unsteady Glottal Flow Model [in Japanese]
,” JSME Int. J., Ser. B
, 60
, pp. 1226
–1233
.20.
Ikeda, T., and Matsuzaki, Y., 1994, “Flow Theory for Analysis of Phonation With a Membrane Model of Vocal Cord,” Proc. ICSLP 94, Vol. 2, pp. 643–646.
21.
Iijima
, H.
, Miki
, N.
, and Nagai
, N.
, 1992
, “Glottal Impedance Based on a Finite Element Analysis of Two-Dimensional Unsteady Viscous Flow in a Static Glottis
,” IEEE Trans. Signal Process.
, 40
, pp. 2125
–2135
.22.
Guo
, C.-G.
, and Scherer
, C.
, 1993
, “Finite Element Simulation of Glottal Flow and Pressure
,” J. Acoust. Soc. Am.
, 94
, pp. 688
–700
.23.
Morse, P. M., 1948, Vibration and Sound, pp. 326–333, McGraw-Hill, New York.
24.
Scherer
, R. C.
, Titze
, I. R.
, and Curtis
, J. F.
, 1983
, “Pressure–Flow Relationships in Two Models of the Larynx Having Rectangular Glottal Shapes
,” J. Acoust. Soc. Am.
, 73
, pp. 668
–676
.25.
Baer
, T.
, Gore
, J. C.
, Gracco
, L. C.
, and Nye
, P. W.
, 1991
, “Analysis of Vocal Tract Shape and Dimensions Using Magnetic Resonance Imaging: Vowels
,” J. Acoust. Soc. Am.
, 90
, pp. 799
–828
.26.
Kakita, Y., Hirano, M., and Ohmaru, K., 1981, “Physical Properties of the Vocal Fold Tissue: Measurements on Excised Larynges,” Vocal Fold Physiology, University of Tokyo Press, pp. 377–397.
27.
Cranen
, B.
, and Boves
, L.
, 1985
, “Pressure Measurements During Speech Production Using Semiconductor Miniature Pressure Transducers: Impact on Models for Speech Production
,” J. Acoust. Soc. Am.
, 77
, pp. 1543
–1551
.28.
Kakita
, Y.
, Hirano
, M.
, Kawasaki
, H.
, and Matsushita
, H.
, 1976
, “Schematical Presentation of Vibration of the Vocal Cord as a Layer-Structured Vibrator—Normal Larynges [in Japanese]
,” J. Otolaryngology Japan
, 79
, pp. 1333
–1340
.Copyright © 2001
by ASME
You do not currently have access to this content.