A two-dimensional flexible channel model of the vocal folds coupled with an unsteady one-dimensional flow model is presented for an analysis of the mechanism of phonation. The vocal fold is approximated by springs and dampers distributed in the main flow direction that are enveloped with an elastic cover. In order to approximate three-dimensional collision of the vocal folds using the two-dimensional model, threshold values for the glottal width are introduced. The numerical results show that the collision plays an important role in speech sound, especially for higher resonant frequency components, because it causes the source sound to include high-frequency components.

1.
Ishizaka
,
K.
, and
Flanagan
,
J. L.
,
1972
, “
Synthesis of Voiced Sounds From a Two-Mass Model of the Vocal Cords
,”
Bell Syst. Tech. J.
,
51
, pp.
1233
1268
.
2.
van den Berg
,
Jw.
,
Zantema
,
J. T.
, and
Doornenbal
,
P.
,
1957
, “
On the Air Resistance and the Bernoulli Effect of the Human Larynx
,”
J. Acoust. Soc. Am.
,
29
, pp.
626
631
.
3.
Story
,
B. H.
, and
Titze
,
I. R.
,
1997
, “
Voice Simulation With a Body-Cover Model of the Vocal Folds
,”
J. Acoust. Soc. Am.
,
97
, pp.
1249
1260
.
4.
Koizumi
,
T.
,
Taniguchi
,
S.
, and
Hiromitsu
,
S.
,
1987
, “
Two-Mass Models of the Vocal Cords for Natural Sounding Voice Synthesis
,”
J. Acoust. Soc. Am.
,
82
, pp.
1179
1192
.
5.
Pelorson
,
X.
,
Hirschberg
,
A.
,
van Hassel
,
R. R.
, and
Wijnanads
,
A. P.
,
1994
, “
Theoretical and Experimental Study of Quasisteady-Flow Separation Within the Glottis During Phonation. Application to a Modified Two-Mass Model
,”
J. Acoust. Soc. Am.
,
96
, pp.
3416
3431
.
6.
Titze
,
I. R.
,
1973
, “
The Human Vocal Cords: A Mathematical Model Part I
,”
Phonetica
,
28
, pp.
129
170
.
7.
Wong
,
D.
,
Ito
,
M. R.
, and
Nicol
,
T.
,
1987
, “
Simulation of Vocal Fold Oscillation Using a Lumped Mass-Spring Approach
,”
Int. J. Model. Simulat.
,
7
, pp.
62
67
.
8.
Titze
,
I. R.
, and
Talkin
,
T.
,
1979
, “
A Theoretical Study of the Effects of Various Laryngeal Configurations on the Acoustic of Phonation
,”
J. Acoust. Soc. Am.
,
66
, pp.
60
74
.
9.
Kagawa
,
Y.
,
Yamabuchi
,
T.
, and
Shimoyama
,
R.
,
1982
, “
Finite Element Simulation of Vocal Cords Oscillation [in Japanese]
,”
Simulation
,
1
, pp.
106
112
.
10.
Kamm
,
R. D.
, and
Pedley
,
T. J.
,
1989
, “
Flow in Collapsible Tubes: A Brief Review
,”
ASME J. Biomech. Eng.
,
111
, pp.
177
179
.
11.
Pedley
,
T. J.
, and
Luo
,
X. Y.
,
1998
, “
Modelling Flow and Oscillations in Collapsible Tubes
,”
Theor. Comput. Fluid Dyn.
,
10
, pp.
277
294
.
12.
Conrad
,
W. A.
,
1980
, “
A New Model of the Vocal Cords Based on a Collapsible Tube Analogy
,”
Med. Res. Eng.
,
13
, pp.
7
10
.
13.
Berke
,
G. S.
,
Green
,
D. C.
,
Smith
,
M. E.
,
Arnstein
,
D. P.
, and
Conrad
,
W. A.
,
1991
, “
Experimental Evidence in the in Vivo Canine for the Collapsible Tube Model of Phonation
,”
J. Acoust. Soc. Am.
,
89
, pp.
1358
1363
.
14.
Matsuzaki
,
Y.
, and
Matsumoto
,
T.
,
1989
, “
Flow in a Two-Dimensional Collapsible Channel With Rigid Inlet and Outlet
,”
ASME J. Biomech. Eng.
,
111
, pp.
180
184
.
15.
Matsuzaki
,
Y.
,
Ikeda
,
T.
,
Kitagawa
,
T.
, and
Sakata
,
S.
,
1994
, “
Analysis of Flow in a Two-Dimensional Collapsible Channel Using Universal ‘Tube’ Law
,”
ASME J. Biomech. Eng.
,
116
, pp.
469
476
.
16.
Ikeda
,
T.
,
Matsuzaki
,
Y.
, and
Sasaki
,
T.
,
1994
, “
Separated Flow in a Channel With an Oscillating Constriction (Numerical Analysis and Experiment) [in Japanese]
,”
JSME Int. J., Ser. B
,
60
, pp.
750
757
.
17.
Ikeda
,
T.
, and
Matsuzaki
,
Y.
,
1999
, “
A One-Dimensional Unsteady Separable and Reattachable Flow Model for Collapsible Tube-Flow Analysis
,”
ASME J. Biomech. Eng.
,
121
, pp.
153
159
.
18.
Matsuzaki
,
Y.
,
Ikeda
,
T.
,
Matsumoto
,
T.
, and
Kitagawa
,
T.
,
1998
, “
Experiments on Steady and Oscillatory Flows at Moderate Reynolds Numbers in a Quasi-Two-Dimensional Channel With a Throat
,”
ASME J. Biomech. Eng.
,
120
, pp.
594
601
.
19.
Ikeda
,
T.
, and
Matsuzaki
,
Y.
,
1994
, “
Synthesis of Voiced Sound With a One-Dimensional Unsteady Glottal Flow Model [in Japanese]
,”
JSME Int. J., Ser. B
,
60
, pp.
1226
1233
.
20.
Ikeda, T., and Matsuzaki, Y., 1994, “Flow Theory for Analysis of Phonation With a Membrane Model of Vocal Cord,” Proc. ICSLP 94, Vol. 2, pp. 643–646.
21.
Iijima
,
H.
,
Miki
,
N.
, and
Nagai
,
N.
,
1992
, “
Glottal Impedance Based on a Finite Element Analysis of Two-Dimensional Unsteady Viscous Flow in a Static Glottis
,”
IEEE Trans. Signal Process.
,
40
, pp.
2125
2135
.
22.
Guo
,
C.-G.
, and
Scherer
,
C.
,
1993
, “
Finite Element Simulation of Glottal Flow and Pressure
,”
J. Acoust. Soc. Am.
,
94
, pp.
688
700
.
23.
Morse, P. M., 1948, Vibration and Sound, pp. 326–333, McGraw-Hill, New York.
24.
Scherer
,
R. C.
,
Titze
,
I. R.
, and
Curtis
,
J. F.
,
1983
, “
Pressure–Flow Relationships in Two Models of the Larynx Having Rectangular Glottal Shapes
,”
J. Acoust. Soc. Am.
,
73
, pp.
668
676
.
25.
Baer
,
T.
,
Gore
,
J. C.
,
Gracco
,
L. C.
, and
Nye
,
P. W.
,
1991
, “
Analysis of Vocal Tract Shape and Dimensions Using Magnetic Resonance Imaging: Vowels
,”
J. Acoust. Soc. Am.
,
90
, pp.
799
828
.
26.
Kakita, Y., Hirano, M., and Ohmaru, K., 1981, “Physical Properties of the Vocal Fold Tissue: Measurements on Excised Larynges,” Vocal Fold Physiology, University of Tokyo Press, pp. 377–397.
27.
Cranen
,
B.
, and
Boves
,
L.
,
1985
, “
Pressure Measurements During Speech Production Using Semiconductor Miniature Pressure Transducers: Impact on Models for Speech Production
,”
J. Acoust. Soc. Am.
,
77
, pp.
1543
1551
.
28.
Kakita
,
Y.
,
Hirano
,
M.
,
Kawasaki
,
H.
, and
Matsushita
,
H.
,
1976
, “
Schematical Presentation of Vibration of the Vocal Cord as a Layer-Structured Vibrator—Normal Larynges [in Japanese]
,”
J. Otolaryngology Japan
,
79
, pp.
1333
1340
.
You do not currently have access to this content.