We have previously developed an adsorption-limited model to describe the exchange of lung surfactant and its fractions to and from an air–liquid interface in oscillatory surfactometers. Here we extend this model to allow for diffusion in the liquid phase. Use of the model in conjunction with experimental data in the literature shows that diffusion-limited transport is important for characterizing the transient period from the start of oscillations to the achievement of steady-state conditions. Matching previous data shows that upon high levels of film compression, large changes occur in adsorption rate, desorption rate, and diffusion constant, consistent with what one might expect if the subsurface region was greatly enriched in DPPC. Collapse of the surfactant film that occurs during compression leads to a significant elevation of surfactant concentration immediately beneath the interface, consistent with the subsurface depot of surfactant that has been postulated by other investigators. Modeling studies also uncovered a phenomenon of surfactant behavior in which the interfacial tension remains constant at its minimum equilibrium value while the film is compressed, but without collapse of the film. The phenomenon was due to desorption of surfactant from the interface and termed “pseudo-film collapse.” The new model also gave improved agreement with steady-state oscillatory cycling in a pulsating bubble surfactometer.

1.
Fuchimukai
,
T.
,
Fujiwara
,
T.
,
Takahashi
,
A.
, and
Enhorning
,
G.
,
1987
, “
Artificial Pulmonary Surfactant Inhibited by Proteins
,”
J. Appl. Physiol.
,
62
, pp.
429
437
.
2.
Holm
,
B. A.
,
Venkitaraman
,
A. R.
,
Enhorning
,
G.
, and
Notter
,
R. H.
,
1990
, “
Biophysical Inhibition of Synthetic Lung Surfactants
,”
Chem. Phys. Lipids
,
52
, pp.
243
250
.
3.
Schu¨rch
,
S.
,
Schurch
,
D.
,
Curstedt
,
T.
, and
Robertson
,
B.
,
1994
, “
Surface Activity of Lipid Extract Surfactant in Relation to Film Area Compression and Collapse
,”
J. Appl. Physiol.
,
77
, pp.
974
986
.
4.
Wang
,
Z.
,
Hall
,
S. B.
, and
Notter
,
R. H.
,
1995
, “
Dynamic Surface Activity of Films of Lung Surfactant Phospholipids, Hydrophobic Proteins, and Neutral Lipids
,”
J. Lipid Res.
,
36
, pp.
1283
1293
.
5.
Enhorning
,
G.
,
1977
, “
Pulsating Bubble Technique for Evaluating Pulmonary Surfactant
,”
J. Appl. Physiol.
,
43
, pp.
198
203
.
6.
Schu¨rch
,
S.
,
Bachofen
,
H.
,
Goerke
,
J.
, and
Possmayer
,
F.
,
1989
, “
A Captive Bubble Method Reproduces the in Situ Behavior of Lung Surfactant Monolayers
,”
J. Appl. Physiol.
,
67
, pp.
2389
2396
.
7.
Otis
, Jr.,
D. R.
,
Ingenito
,
E. P.
,
Kamm
,
R. D.
, and
Johnson
,
M.
,
1994
, “
Dynamic Surface Tension of Surfactant TA: Experiments and Theory
,”
J. Appl. Physiol.
,
77
, pp.
2681
2688
.
8.
Ingenito
,
E. P.
,
Mark
,
L.
,
Morris
,
J.
,
Espinosa
,
F. F.
,
Kamm
,
R. D.
, and
Johnson
,
M.
,
1999
, “
Biophysical Characterization and Modeling of Lung Surfactant Components
,”
J. Appl. Physiol.
,
86
, pp.
1702
1714
.
9.
Tchoreloff
,
P.
,
Gulik
,
A.
,
Denizot
,
B.
,
Proust
,
J. E.
, and
Puisieux
,
F.
,
1991
, “
A Structural Study of Interfacial Phospholipid and Lung Surfactant Layers by Transmission Electron Microscopy After Blodgett Sampling: Influence of Surface Pressure and Temperature
,”
Chem. Phys. Lipids
,
59
, pp.
151
165
.
10.
Notter
,
R. H.
,
Tabak
,
S. A.
,
Holcomb
,
S.
, and
Mavis
,
R. D.
,
1980
, “
Postcollapse Dynamic Surface Pressure Relaxation in Binary Surface Films Containing Dipalmitoyl Phosphatidylcholine
,”
J. Colloid Interface Sci.
,
74
, pp.
370
377
.
11.
Smith
,
R. D.
, and
Berg
,
J. C.
,
1980
, “
The Collapse of Surfactant Monolayers at the Air–Water Interface
,”
J. Colloid Interface Sci.
,
74
, pp.
273
286
.
12.
Chang
,
D. H.
, and
Franses
,
E. I.
,
1994
, “
Dynamic Tension Behavior of Aqueous Octanol Solutions Under Constant-Area and Pulsating-Area Conditions
,”
Chem. Eng. Sci.
,
49
, pp.
313
325
.
13.
Otis, D., 1994, An Investigation of the Mechanisms Responsible for Pulmonary Airway Closure, Mechanical Engineering, Cambridge, MIT, p. 203.
14.
Morris, J., 1998, “Characterization of the Dynamic Behavior of Lung Surfactant and Its Components,” Mechanical Engineering, MIT, Cambridge, MA.
15.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York.
16.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipes in FORTRAN. The Art of Scientific Computing, Cambridge University Press, Cambridge, U.K.
17.
Johannsen
,
E. C.
,
Chung
,
J. B.
,
Chang
,
C. H.
, and
Franses
,
E. I.
,
1991
, “
Lipid Transport to Air/Water Interfaces
,”
Colloids Surface
,
53
, pp.
117
134
.
18.
Putz
,
G.
,
Goerke
,
J.
,
Taeusch
,
H. W.
, and
Clements
,
J. A.
,
1994
, “
Comparison of Captive and Pulsating Bubble Surfactometers With Use of Lung Surfactants
,”
J. Appl. Physiol.
,
76
, pp.
1425
1431
.
19.
Schu¨rch
,
S.
,
Qanbar
,
R.
,
Bachofen
,
H.
, and
Possmayer
,
F.
,
1995
, “
The Surface-Associated Surfactant Reservoir in the Alveolar Lining
,”
Biol. Neonate
,
67
(Suppl.), pp.
61
76
.
20.
Schu¨rch
,
S.
,
Green
,
F. H. Y.
, and
Bachofen
,
H.
,
1998
, “
Formation and Structure of Surface Films: Captive Bubble Surfactometry
,”
Biochim. Biophys. Acta
,
1408
, pp.
180
202
.
21.
Tanford, C., 1973, The Hydrophobic Effect, Wiley-Interscience, New York.
22.
Hall
,
S. B.
,
Bermel
,
M. S.
,
Ko
,
Y. T.
,
Palmer
,
H. J.
,
Enhorning
,
G.
, and
Notter
,
R. H.
,
1993
, “
Approximations in the Measurement of Surface Tension on the Oscillating Bubble Surfactometer
,”
J. Appl. Physiol.
,
75
, pp.
468
477
.
You do not currently have access to this content.