Viscoelastic properties of wet and dry human compact bone were studied in torsion and in bending for both the longitudinal and transverse directions at frequencies from 5 mHz to 5 kHz in bending to more than 50 kHz in torsion. Two series of tests were done for different longitudinal and transverse specimens from a human tibia. Wet bone exhibited a larger viscoelastic damping tan δ (phase between stress and strain sinusoids) than dry bone over a broad range of frequency. All the results had in common a relative minimum in tan δ over a frequency range, 1 to 100 Hz, which is predominantly contained in normal activities. This behavior is inconsistent with an optimal “design” for bone as a shock absorber. There was no definitive damping peak in the range of frequencies explored, which could be attributed to fluid flow in the porosity of bone. [S0148-0731(00)00102-3]

1.
Rauber, A. A., 1876, “Elasticita¨t und Festigkeit der Knochen. Anatomisch–Physiologische Studie,” Engelmann, Leipzig.
2.
Sasaki
,
N.
,
Nakayama
,
Y.
,
Yoshikawa
,
M.
, and
Enyo
,
A.
,
1993
, “
Stress Relaxation Function of Bone and Bone Collagen
,”
J. Biomech.
,
26
, pp.
1369
1376
.
3.
Katz
,
J. L.
,
1980
, “
Anisotropy of Young’s Modulus of Bone
,”
Nature (London)
,
283
, pp.
106
107
.
4.
Lakes
,
R. S.
, and
Saha
,
S.
,
1979
, “
Cement Line Motion in Bone
,”
Science
,
204
, pp.
501
503
.
5.
Lakes
,
R. S.
, and
Katz
,
J. L.
,
1979
, “
Viscoelastic Properties of Wet Cortical Bone: Part II, Relaxation Mechanisms
,”
J. Biomech.
,
12
, pp.
679
687
.
6.
Lakes
,
R. S.
, and
Katz
,
J. L.
,
1979
, “
Viscoelastic Properties of Wet Cortical Bone: Part III, A Non-linear Constitutive Equation
,”
J. Biomech.
,
12
, pp.
689
698
.
7.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
, pp.
155
164
.
8.
Djerad
,
S. E.
,
Du Burck
,
F.
,
Naili
,
S.
, and
Oddou
,
C.
,
1992
, “
Analyze du Comportement Rhe´ologique Instationnaire d’un E´chantillon de Muscle Cardiaque
,”
C. R. Acad. Sci. Paris, Se´rie II
,
315
, pp.
1615
1621
.
9.
Piekarski
,
K.
, and
Munro
,
M.
,
1977
, “
Transport Mechanism Operating Between Blood Supply and Osteocytes in Long Bones
,”
Nature (London)
,
269
, pp.
80
82
.
10.
Cowin
,
S. C.
,
1993
, “
Bone Stress Adaptation Models
,”
ASME J. Biomech. Eng.
,
115
, pp.
528
533
.
11.
Cowin
,
S. C.
,
Weinbaum
,
S.
, and
Zeng
,
Y.
,
1995
, “
A Case for Bone Canaliculi as the Anatomical Site of Strain Generated Potentials
,”
J. Biomech.
,
28
, No.
11
, pp.
1281
1297
.
12.
Cowin
,
S. C.
,
1998
, “
On the Calculation of Bone Pore Water Pressure Due to Mechanical Loading
,”
Int. J. Solids Struct.
,
35
, Nos.
34–35
, pp.
4981
4997
.
13.
Chen
,
C. P.
, and
Lakes
,
R. S.
,
1989
, “
Apparatus for Determining the Properties of Materials Over Ten Decades of Frequency and Time
,”
J. Rheol.
,
338
, pp.
1231
1249
.
14.
Brodt
,
M.
,
Cook
,
L. S.
, and
Lakes
,
R. S.
,
1995
, “
Apparatus for Measuring Viscoelastic Properties Over Ten Decades: Refinements
,”
Rev. Sci. Instrum.
,
66
, pp.
5292
5297
.
15.
Lakes
,
R. S.
, and
Quackenbush
,
J.
,
1996
, “
Viscoelastic Behaviour in Indium Tin Alloys Over a Wide Range of Frequency and Time
,”
Philos. Mag. Lett.
,
74
, pp.
227
232
.
16.
Stromberg
,
L.
, and
Dalen
,
N.
,
1976
, “
The Influence of Freezing on the Maximum Torque Capacity of Long Bones, An Experimental Study on Dogs
,”
Acta Orthop. Scand.
,
47
, No.
3
, pp.
254
256
.
17.
Hamer
,
A. J.
,
Strachan
,
J. R.
,
Black
,
M. M.
,
Ibbotson
,
C. J.
,
Stockley
,
I.
, and
Elson
,
R. A.
,
1996
, “
Biomechanical Properties of Cortical Allograft Bone Using a New Method of Bone Strength Measurement—A Comparison of Fresh, Fresh-Frozen and Irradiated Bone
,”
J. Bone Joint Surg. Br.
,
78B
, pp.
363
368
.
18.
Kang
,
Q.
,
An
,
Y.
, and
Friedman
,
R. J.
,
1997
, “
Effects of Multiple Freezing-Thawing Cycles on Ultimate Indentation Load and Stiffness of Bovine Cancellous Bone
,”
Am. J. Vet. Res.
,
58
, pp.
1171
1173
.
19.
Reilly
,
D. T.
, and
Burstein
,
A. H.
,
1975
, “
The Elastic and Ultimate Properties of Compact Bone Tissue
,”
J. Biomech.
,
8
, pp.
393
405
.
20.
Sasaki
,
N.
, and
Enyo
,
A.
,
1995
, “
Viscoelastic Properties of Bone as a Function of Water Content
,”
J. Biomech.
,
28
, pp.
809
815
.
21.
Paul
,
I. L.
,
Munro
,
M. B.
,
Abernethy
,
P. J.
,
Simon
,
S. R.
,
Radin
,
E. L.
, and
Rose
,
R. M.
,
1978
, “
Musculo-Skeletal Shock Absorption: Relative Contribution of Bone and Soft Tissues at Various Frequencies
,”
J. Biomech.
,
11
, pp.
237
239
.
22.
Black
,
J.
, and
Korostoff
,
E.
,
1973
, “
Dynamic Mechanical Properties of Viable Human Cortical Bone
,”
J. Biomech.
,
16
, p.
435
435
.
23.
Currey
,
J. D.
,
1965
, “
Anelasticity in Bone and Echinoderm Skeletons
,”
J. Exp. Biol.
,
43
, p.
279
279
.
24.
Lugassy, A. A., and Korostoff, E., 1969, “Viscoelastic Behavior of Bovine Femoral Cortical Bone and Sperm Whale Dentin,” in: Research in Dental and Medical Materials, Plenum, NY.
25.
Mcelhaney
,
J. H.
,
1966
, “
Dynamic Response of Bone and Muscle Tissue
,”
J. Appl. Physiol.
,
21
, pp.
1231
1236
.
26.
Smith
,
R.
, and
Keiper
,
D.
,
1965
, “
Dynamic Measurement of Viscoelastic Properties of Bone
,”
Am. J. Med. Electron
,
4
, p.
156
156
.
27.
Tennyson
,
R. C.
,
Ewert
,
R.
, and
Niranjan
,
V.
,
1972
, “
Dynamic Viscoelastic Response of Bone
,”
Experim. Mech.
,
12
, p.
502
502
.
28.
Lakes
,
R. S.
, and
Katz
,
J. L.
,
1974
, “
Interrelationships Among the Viscoelastic Functions for Anisotropic Solids: Application to Calcified Tissues and Related Systems
,”
J. Biomech.
,
7
, pp.
259
270
.
29.
Lakes
,
R. S.
,
Katz
,
J. L.
, and
Sternstein
,
S. S.
,
1979
, “
Viscoelastic Properties of Wet Cortical Bone—I. Torsional and Biaxial Studies
,”
J. Biomech.
,
12
, pp.
657
678
.
30.
Lakes
,
R. S.
,
1993
, “
Materials With Structural Hierarchy
,”
Nature (London)
,
361
, pp.
511
515
.
31.
Cooper
,
R. R.
,
Milgram
,
J. W.
, and
Robinson
,
R. A.
,
1966
, “
Morphology of the Osteon: An Electron Microscopic Study
,”
J. Bone Joint Surg.
,
48A
, pp.
1239
1271
.
32.
Hancox, N. M., 1972, Biology of Bone, Cambridge University Press.
33.
Frost, H. M., 1963, Bone Remodeling Dynamics, Charles C. Thomas, Springfield, IL.
34.
Pope, M. H., and Outwater, J. H., 1972, “Fracture Initiation in Compact Bone,” ASME Paper No. 72-WA/BHF-3.
35.
Kufahl
,
R. H.
, and
Saha
,
S.
,
1990
, “
Canaliculi-Lacunae Network
,”
J. Biomech.
,
23
, pp.
171
180
.
36.
Stewart, K. J., 1999, “Deformation Induced Fluid Flow as a Mechanism for Bone Adaptation,” M.S. thesis, University of Iowa, Iowa City, IA.
37.
Swan
,
C. C.
,
1994
, “
Techniques for Stress- and Strain-Controlled Homogenization of Inelastic Periodic Composites
,”
Comput. Methods Appl. Mech. Eng.
,
117
, pp.
249
267
.
38.
Salzstein
,
R. A.
, and
Pollack
,
S. R.
,
1987
, “
Electromechanical Potentials in Cortical Bone—II. Experimental Analysis
,”
J. Biomech.
,
20
, pp.
271
280
.
39.
Zhang
,
D.
,
Weinbaum
,
S.
, and
Cowin
,
S. C.
,
1998
, “
Estimates of Peak Pressures in Bone Pore Water
,”
ASME J. Biomech. Eng.
,
120
, pp.
697
703
.
40.
Rouhana, S. W., Johnson, M. W., Chakkalakal, D. A., Harper, R. A., and Katz, J. L., 1981, “Permeability of Compact Bone,” Joint ASME–ASCE Conference of the Biomechanics Symposium, ASME AMD-Vol. 43 pp. 169–172.
41.
Lakes
,
R. S.
,
Yoon
,
H. S.
, and
Katz
,
J. L.
,
1983
, “
Slow Compressional Wave Propagation in Wet Human and Bovine Cortical Bone
,”
Science
,
220
, pp.
513
515
.
42.
Thompson, G., 1971, “Experimental Studies of Lateral and Torsional Vibration of Intact Dog Radii,” Ph.D. thesis, Biomedical Engineering, Stanford University.
43.
Lakes
,
R. S.
,
1982
, “
Dynamical Study of Couple Stress Effects in Human Compact Bone
,”
ASME J. Biomech. Eng.
,
104
, pp.
6
11
.
44.
Adler
,
L.
, and
Cook
,
C. V.
,
1975
, “
Ultrasonic Parameters of Freshly Frozen Dog Tibia
,”
J. Acoust. Soc. Am.
,
58
, pp.
1107
1108
.
45.
Park
,
H. C.
, and
Lakes
,
R. S.
,
1986
, “
Cosserat Micromechanics of Human Bone: Strain Redistribution by a Hydration-Sensitive Constituent
,”
J. Biomech.
,
19
, pp.
385
397
.
You do not currently have access to this content.