Arteries with high-grade stenoses may compress under physiologic conditions due to negative transmural pressure caused by high-velocity flow passing through the stenoses. To quantify the compressive conditions near the stenosis, a nonlinear axisymmetric model with fluid–wall interactions is introduced to simulate the viscous flow in a compliant stenotic tube. The nonlinear elastic properties of the tube (tube law) are measured experimentally and used in the model. The model is solved using ADINA (Automatic Dynamic Incremental Nonlinear Analysis), which is a finite element package capable of solving problems with fluid–structure interactions. Our results indicate that severe stenoses cause critical flow conditions such as negative pressure and high and low shear stresses, which may be related to artery compression, plaque cap rupture, platelet activation, and thrombus formation. The pressure field near a stenosis has a complex pattern not seen in one-dimensional models. Negative transmural pressure as low as −24 mmHg for a 78 percent stenosis by diameter is observed at the throat of the stenosis for a downstream pressure of 30 mmHg. Maximum shear stress as high as 1860 dyn/cm2 occurs at the throat of the stenoses, while low shear stress with reversed direction is observed right distal to the stenosis. Compressive stresses are observed inside the tube wall. The maximal principal stress and hoop stress in the 78 percent stenosis are 80 percent higher than that from the 50 percent stenosis used in our simulation. Flow rates under different pressure drop conditions are calculated and compared with experimental measurements and reasonable agreement is found for the prebuckling stage.

1.
ADINA R & D, Inc., 1995a, Theory and Modeling Guide, Watertown, MA.
2.
ADINA R & D, Inc., 1995b, ADINA Verification Manual, Watertown, MA.
3.
Aoki
T.
, and
Ku
D. N.
,
1993
, “
Collapse of diseases arteries with eccentric cross section
,”
J. Biomechanics
, Vol.
26
,
2
, pp.
133
142
.
4.
Bathe, K. J., 1996, Finite Element Procedures, Prentice-Hall, Inc., New Jersey.
5.
Bathe, M., 1998, “A fluid–structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic artery,” B. S. Thesis, MIT.
6.
Bertram
C. D.
,
1987
, “
The effects of wall thickness, axial strain and end proximity on the pressure-area relation of collapsible tubes
,”
J. Biomechanics
, Vol.
20
, pp.
863
876
.
7.
Binns
R. L.
, and
Ku
D. N.
,
1989
, “
Effect of stenosis on wall motion: a possible mechanism of stroke and transient ischemic attack
,”
Arteriosclerosis
, Vol.
9
,
6
,
842
847
.
8.
Biz, S., 1993, “Flow in collapsible stenoses: an experimental study,” M.S. Thesis, Georgia Institute of Technology.
9.
Cao
I.
, and
Rittgers
S. E.
,
1998
, “
Particle motion within in vitro models of stenosel internal carotid and left anterior descending coronary arteries
,”
Ann. Biomed. Eng.
, Vol.
26
, No.
2
, pp.
190
199
.
10.
Constantinides, P., 1990, “Plaque hemorrhages, their genesis and their role in supra-plaque thrombosis and atherogenesis,” Pathobiology of the Human Atherosclerotic Plaque, Springer-Verlag, New York, pp. 393–411.
11.
Davies
M. J.
, and
Thomas
A. C.
,
1985
, “
Plaque fissuring—the cause of acute myocardial infarction, sudden ischemic death, and crecendo angina
,”
Br. Heart J.
, Vol.
53
, pp.
363
373
.
12.
Donohue
T. J.
,
Miller
D. D.
,
Bach
R. G.
,
Tron
C.
,
Wolford
T.
,
Caracciolo
E. A.
,
Aguirre
F. V.
,
Younis
L. T.
,
Chaitman
B. R.
, and
Kern
M. J.
,
1996
, “
Correlation of poststenotic hyperemic coronary flow velocity and pressure with abnormal stress myocardial perfusion imaging in coronary artery disease
,”
Am. J. Cardiology
, Vol.
77
, pp.
948
964
.
13.
Downey
J. M.
, and
Kirk
E. S.
,
1975
, “
Inhibition of coronary blood flow by a vascular waterfall mechanism
,”
Circ. Res.
, Vol.
36
, pp.
753
760
.
14.
Downing, J. M., 1993, “Flow through a compliant stenotic artery: a parametric evaluation,” M.S. Thesis, Georgia Inst. of Tech.
15.
Downing
J. M.
, and
Ku
D. N.
,
1997
, “
Effects of frictional losses and pulsatile flow on the collapse of stenotic arteries
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
119
, pp.
317
324
.
16.
Duncker
D. J. G. M.
,
Zhang
J.
, and
Bache
R. J.
,
1993
, “
Coronary pressure-flow relation in left ventricular hypertrophy. Importance of changes in back pressure versus changes in minimum resistance
,”
Circ. Res.
, Vol.
72
, pp.
579
587
.
17.
Elad
D.
,
Kamm
R. D.
, and
Shapiro
A. H.
,
1987
, “
Choking phenomena in a lung-like model
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
109
, pp.
1
9
.
18.
Elad
D.
,
Kamm
R. D.
, and
Shapiro
A. H.
,
1989
, “
Steady compressible flow in collapsible tubes: application to forced expiration
,”
J. of Fluid Mech.
, Vol.
203
, pp.
401
418
.
19.
Fung, Y. C., 1994, A First Course in Continuum Mechanics, 3rd ed., Prentice Hall, New Jersey.
20.
Hafner, C. D., 1984, “Minimizing the risks of carotid endarterectomy,” J. Vasc. Surg., pp. 392–397.
21.
Heil
M.
, and
Pedley
T. J.
,
1995
, “
Large axisymmetric deformation of a cylindrical shell
,”
J. Fluids and Structures
, Vol.
9
, pp.
237
256
.
22.
Heil
M.
, and
Pedley
T. J.
,
1996
, “
Large post-buckling deformations of cylindrical shells conveying viscous flow
,”
J. Fluids and Structures
, Vol.
10
, pp.
565
599
.
23.
Hoffman
J. J. E.
, and
Spaan
J. A. E.
,
1990
, “
Pressure-flow relations in coronary circulation
,”
Physiol. Rev.
, Vol.
70
, pp.
331
389
.
24.
Judd, R. M., and Mates, M. E., 1989, “Flow through a stenosis in a compliant tube,” Proc. 2nd Intl Symp on Biofluid Mechanics and Biorheology, D. Liepsch, ed., Munich, Germany, pp. 417–423.
25.
Kamm
R. D.
, and
Pedley
T. J.
,
1989
, “
Flow in collapsible tubes: a brief review
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
111
, pp.
177
179
.
26.
Kamm
R. D.
, and
Shapiro
A. H.
,
1979
, “
Unsteady flow in a collapsible tube subjected to external pressure or body force
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
95
, pp.
1
78
.
27.
Kern
M. J.
,
Flynn
M. S.
,
Caracciolo
E. A.
,
Bach
R. G.
,
Donohue
T. J.
, and
Aguirre
F. V.
,
1993
, “
Use of translesional coronary flow velocity for interventional decisions in a patient with multiple intermediately severe coronary stenoses
,”
Catheterization & Cardiovascular Diagnosis
, Vol.
29
, pp.
148
153
.
28.
Klocke
F. J.
,
Mates
R. E.
,
Canty
J. M.
, and
Eclit
A. K.
,
1985
, “
Coronary pressure-flow relationships. Controversial issues and probable implications
,”
Circ. Res.
, Vol.
56
, pp.
310
323
.
29.
Ku
D. N.
,
1997
, “
Blood flow in arteries
,”
Ann. Rev. Fluid Mech.
, Vol.
29
, pp.
399
434
.
30.
Ku
D. N.
,
Kobayashi
S.
,
Wootton
D. M.
, and
Tang
D.
,
1997
, “
Compression from dynamic pressure conditions in models of arterial disease
,”
Annals of Biomedical Engineering
, Vol.
25
,
supp. 1
, pp.
S-22
S-22
.
31.
Ku, D. N., Zeigler, M., Binns, R. L., and Stewart, M. T., 1989, “A study of predicted and experimental wall collapse in models of highly stenotic arteries,” Proc. 2nd Intl Symp on Biofluid Mechanics and Biorheology, D. Liepsch, ed., Munich, Germany, pp. 409–416.
32.
Ku
D. N.
,
Zeigler
M. N.
, and
Downing
J. M.
,
1990
, “
One-dimensional steady inviscid flow through a stenotic collapsible tube
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
112
, pp.
444
450
.
33.
Lee, R. T., Richardson, S. G., Loree, H. M., et al., 1992, “Prediction of mechanical properties of human atherosclerotic tissue by high-frequency intravascular ultrasound imaging,” Arteriosclerosis, pp. 1–5.
34.
McCord, B. M., and Ku, D. N., 1993, “Mechanical rupture of the atherosclerotic plaque fibrous cap,” Proc. 1993 Bioengineering Conference, Colorado, ASME BED-Vol. 24, pp. 324–327.
35.
Oates
G. C.
,
1975
, “
Fluid flow in soft-walled tubes, I. steady flow
,”
Med. and Bio. Engng.
, Vol.
13
, pp.
773
778
.
36.
Ogden, R. W., 1984, Nonlinear Elastic Deformations, Ellis Horwood, Chichester, U.K.
37.
Powell, B. E., 1991, “Experimental measurements of flow through stenotic collapsible tubes,” M.S. Thesis, Georgia Inst. of Tech.
38.
Shapiro
A. H.
,
1977
, “
Steady flow in collapsible tubes
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
99
, pp.
126
147
.
39.
Siebes, M., 1991, “Effect of nonlinear wall mechanics on compliant coronary stenoses: a flow simulation study,” Advances in Bioengineering, ASME BED-Vol. 20, pp. 345–348.
40.
Siebes
M.
,
Campbell
C. S.
, and
D’Argenio
D. Z.
,
1996
, “
Fluid dynamics of a partially collapsible stenosis in a flow model of the coronary circulation
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
118
, pp.
489
497
.
41.
Siebes, M., and D’Argenio, D. Z., 1990, “Mathematical model of flow through a partially collapsible coronary stenosis,” Advances in Bioengineering, ASME BED-Vol. 17, pp. 139–142.
42.
Stergiopulos, N., Moore, J. E., Jr., Strassle, A., Ku, D. N., and Meister, J. J., 1993, “Steady flow test and demonstration of collapse on models of compliant axisymmetric stenoses,” Advances in Bioengineering, ASME BED-Vol. 26, pp. 455–458.
43.
Tandon
P. N.
, and
Rana
U. V.
,
1995
, “
A new model for blood flow through an artery with axisymmetric stenosis
,”
Int’l J. of Bio-Medical Computing
, Vol.
38
, pp.
257
267
.
44.
Tang, D., 1995, “Numerical solutions of viscous flow in elastic tubes with stenoses of various stiffness,” Proc. 1995 Bioengng. Conf., ASME BED-Vol. 29, pp. 521–522.
45.
Tang, D., 1996, “An axisymmetric model for viscous flow in tapered collapsible stenotic elastic tubes,” 1996 Advances in Bioengineering, ASME BED-Vol. 33, pp. 87–88.
46.
Tang, D., and Yang, C., 1999a, “A 3-D thin-wall model with fluid–structure interactions for blood flow in carotid arteries with symmetric and asymmetric stenoses,” Computers and Structures, to appear.
47.
Tang, D., Yang, C., and Huang, Y., 1999b, “Wall stress and strain analysis using a 3-D thick-wall model with fluid–structure interactions for blood flow in carotid arteries with stenoses,” Computers and Structures, to appear.
This content is only available via PDF.
You do not currently have access to this content.