Albumin transport in a stenosed artery configuration is analyzed numerically under steady and pulsatile flow conditions. The flow dynamics is described applying the incompressible Navier-Stokes equations for Newtonian fluids, the mass transport is modelled using the convection diffusion equation. The boundary conditions describing the solute wall flux take into account the concept of endothelial resistance to albumin flux by means of a shear dependent permeability model based on experimental data. The study concentrates on the influence of steady and pulsatile flow patterns and of regional variations in vascular geometry on the solute wall flux and on the ratio of endothelial resistance to concentration boundary layer resistance. The numerical solution of the Navier-Stokes equations and of the transport equation applies the finite element method where stability of the convection dominated transport process is achieved by using an upwind procedure and a special subelement technique. Numerical simulations are carried out for albumin transport in a stenosed artery segment with 75 percent area reduction representing a late stage in the progression of an atherosclerotic disease. It is shown that albumin wall flux varies significantly along the arterial section, is strongly dependent upon the different flow regimes and varies considerably during a cardiac cycle. The comparison of steady results and pulsatile results shows differences up to 30 percent between time-averaged flux and steady flux in the separated flow region downstream the stenosis.

1.
Back
L. H.
,
Radbill
J. R.
and
Crawford
D. W.
,
1977
, “
Analysis of Oxygen Transport From Pulsatile, Viscous Blood Flow to Diseased Coronary Arteries of Man
,”
J. Biomechanics
, Vol.
10
, pp.
763
774
.
2.
Brooks
A. N.
, and
Hughes
T. J. R.
,
1982
, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comp. Meth. in Appl. Mech. and Eng.
, Vol.
32
, pp.
199
259
.
3.
Caro
C. G.
,
Fitzgerald
J. M.
, and
Schroter
R. C.
,
1971
, “
Atheroma and Wall Shear: Observation, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism of Atherogenesis
,”
Proc. Roy. Soc. Lond.
Vol.
177
, pp.
109
159
.
4.
Davies
P. F.
,
Dewey
C. F.
,
Bussolari
S. R.
,
Gordon
E. J.
and
Gimbrone
M. A.
,
1984
, “
Influence of Hemodynamic Forces on Vascular Endothelial Function
,”
Journal of Clinical Investigations
, Vol.
73
, pp.
1121
1142
.
5.
Friedman
M. H.
and
Ehrlich
L. W.
,
1975
, “
Effect of Spatial Variations in Shear on Diffusion at the Wall of an Arterial Branch
,”
Circulation Research
, Vol.
37
, pp.
446
454
.
6.
Friedman
M. H.
and
Fry
D. L.
,
1993
, “
Arterial Permeability Dynamic, and Vascular Disease
,”
Atherosclerosis
, Vol.
104
, pp.
189
194
.
7.
Fry
D. L.
,
1968
, “
Acute Vascular Endothelial Changes Associated With Increased Blood Velocity Gradients
,”
Circulation Research
, Vol.
22
, pp.
165
197
.
8.
Fry, D. L., 1976, “Hemodynamic Forces in Atherogenesis,” Cerebrovascular Diseases P. Scheinberg, ed., Raven Press, New York, pp. 77–95.
9.
Fry, D. L. and Vaishnav, R. N., 1980, “Mass Transport in the Arterial Wall,” Basic Hemodynamics and its Role in Disease Processes, Patel, D. J. and Vaishnav, R. N., eds. University Park Press, pp. 425–482.
10.
Henderson, J. M., Fry, D. L., and Friedman, M. H., 1994, “Analysis of Models of Arterial Permeability Dynamics,” Biofluid Mechanics, D. Liepsch, ed., Fortschritt-Berichte, Reihe 17, Nr. 107, VDI-Verlag, pp. 717–725.
11.
Hughes
T. J. R.
,
Mallet
M.
and
Mizukami
A.
,
1986
, “
A New Finite Element Formulation for Computational Fluid Dynamics: II. Beyond SUPG
,”
Comp, Meth. in Appl. Mech. and Eng.
, Vol.
54
, pp.
341
355
.
12.
Hughes
T. J. R.
,
1987
, “
Recent Progress in the Development and Understanding of SUPG Methods With Special Reference to the Compressible Euler and Navier-Stokes Equations
,”
Int. J. Num. Meth. in Fluids
, Vol.
7
, pp.
1261
1275
.
13.
Jo
H.
,
Dull
R. O.
,
Hollis
T. M.
, and
Tarbell
J. M.
,
1991
, “
Endothelial Albumin Permeability is Shear Dependent, Time Dependent and Reversible
,”
American Journal of Physiology
, Vol.
260
, pp.
H1992
H1992
.
14.
Johnson
C.
,
Na¨vert
U.
, and
Pitka¨ranta
J.
,
1984
, “
Finite Element Methods for Linear Hyperbolic Problems
,”
Comp. Meth. in Appl. Mech. and Eng.
, Vol.
45
, pp.
285
312
.
15.
Ma
P.
,
Li
X.
, and
Ku
D. N.
,
1994
, “
Heat and Mass Transfer in a Separated Flow Region for High Prandtl and Schmidt Numbers Under Pulsatile Conditions
,”
Int. J. Heat and Mass Transfer
, Vol.
37
, pp.
2723
2736
.
16.
Osenberg, H. P., 1991, “Simulation des arteriellen Blutflusses–Ein allgemeines Modell mit Anwendung auf das menschliche Hirngefa¨ßsystem,” Diss., ETH-Zu¨rich 9342, IBT-Zu¨rich.
17.
Perktold, K., 1987, “On Numerical Simulation of Three-Dimensional Physiological Flow Problems,” Ber. Math. Stat. Sektion, Forschungsges. Joanneum Graz, Nr. 2809.
18.
Perktold
K.
,
Resch
M.
, and
Florian
H.
,
1991
, “
Pulsatile Non-Newtonian Flow Characteristics in a Three-Dimensional Human Carotid Bifurcation Model
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
113
, pp.
464
475
.
19.
Perktold
K.
, and
Rappitsch
G.
,
1995
, “
Computer Simulation of Local Blood Flow and Vessel Mechanics in a Compliant Carotid Artery Bifurcation Model
,”
J. Biomechanics
, Vol.
28
, pp.
845
856
.
20.
Perktold
K.
,
Rappitsch
G.
and
Liepsch
D.
,
1994
, “
Flow and Wall Shear Stress in the Human Carotid Artery Bifurcation: Computer Simulation Under Anatomically Realistic Conditions
,”
Advances in Bioengineering
, M. J. Askew, ed., ASME, BED-Vol.
28
, pp.
437
438
, New York.
21.
Pittman, J. F. T., 1989, “Finite Elements for Field Problems,” Computer Modeling of Polymer Processing C. L. Tucker, ed., Hansers Publishers, pp. 238–367, Munich, Vienna, New York.
22.
Rappitsch, G., and Perktold, K., 1994, “Numerical Simulation of Mass Transport in Arterial Systems,” Biofluid Mechanics, D. Liepsch, ed., VDI-Verlag, Reihe 17: Biotechnik, Nr. 107, 465–470.
23.
Rappitsch
G.
and
Perktold
K.
,
1994
, “
Computer Simulation of Convective Diffusion Phenomena in Large Arteries
,”
Advances in Bioengineering
M. J. Askew, ed., ASME, BED-Vol.
28
, pp.
391
392
, New York.
24.
Rappitsch
G.
, and
Perktold
K.
,
1996
, “
Computer Simulation of Convective Diffusion Processes in Large Arteries
,”
J. Biomechanics
, Vol.
29
, pp.
207
215
.
25.
Schneiderman
G.
,
Ellis
C. C.
, and
Goldstick
T. K.
,
1979
, “
Mass Transport in Walls of Stenosed Arteries: Variation with Re and Blood Separation
,”
J. Biomechanics
, Vol.
12
, pp.
869
873
.
26.
Sprague
E. A.
,
Steinbach
B. L.
,
Nerem
R. M.
and
Schwartz
C. J.
,
1987
, “
Influence of a Laminar Steady-state Fluid Imposed Wall Shear Stress on the Binding, Internalization, and Degradation of Low Density Lipoproteins by Cultured Arterial Endothelium
,”
Circulation
, Vol.
76
, p.
648
648
.
27.
Tarbell
J. M.
,
1993
, “
Bioengineering Studies of the Endothelial Transport Barrier
,”
BMES Bulletin
, Vol.
17
, pp.
35
39
.
28.
Weinbaum
S.
,
Tzeghai
G.
,
Ganatos
P.
,
Pfeffer
R.
and
Chien
S.
,
1985
, “
The Effect of Cell Turnover and Leaky Junctions on Arterial Macromolecular Transport
,”
Am. J. Physiol.
, Vol.
248
, p.
H945
H945
.
This content is only available via PDF.
You do not currently have access to this content.