Two different non-Newtonian models for blood, one a simple power law model exhibiting shear thinning viscosity, and another a generalized Maxwell model displaying both shear thining viscosity and oscillatory flow viscoelasticity, were used along with a Newtonian model to simulate sinusoidal flow of blood in rigid and elastic straight arteries. When the spring elements were removed from the viscoelastic model resulting in a purely viscous shear thinning fluid, the predictions of flow rate and WSS were virtually unaltered. Hence, elasticity of blood does not appear to influence its flow behavior under physiological conditions in large arteries, and a purely viscous shear thinning model should be quite realistic for simulating blood flow under these conditions. When a power law model with a high shear rate Newtonian cutoff was used for sinusoidal flow simulation in elastic arteries, the mean and amplitude of the flow rate were found to be lower for a power law fluid compared to a Newtonian fluid experiencing the same pressure gradient. The wall shear stress was found to be relatively insensitive to fluid rheology but strongly dependent on vessel wall motion for flows driven by the same pressure gradient. The effect of wall motion on wall shear stress could be greatly reduced by matching flow rate rather than pressure gradient. For physiological flow simulation in the aorta, an increase in mean WSS but a reduction in peak WSS were observed for the power law model compared to a Newtonian fluid model for a matched flow rate waveform.

1.
Bird, R. B., Armstrong, R. C., and Hassager, O., 1987, Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics, Wiley, New York.
2.
Brookshier
 
K. K.
, and
Tarbell
 
J. M.
,
1991
, “
Effect of Hematocrit on Wall Shear Rate in Oscillatory Flow:Do the Elastic Properties of Blood Play a Role
,”
Biorheology
, Vol.
28
, p.
569
569
.
3.
Brookshier
 
K. K.
, and
Tarbell
 
J. M.
,
1993
, “
Evaluation of a Transparent Blood Analog Fluid: Aqueous Xanthan Gum/Glycerin
,”
Biorheology
, Vol.
30
, pp.
107
116
.
4.
Caro, C. G., Pedley, T. J., Schroter, R. C., and Seed, W. A., 1978, The Mechanics of the Circulation, Oxford University Press, New York.
5.
Casson, N., 1959, Rheology of Disperse Systems, Pergamon Press, Oxford.
6.
Chien, S., Dormandy, J., Ernst, E., Matrai, A., eds., 1987, Clinical Hemorheology, Martinus Nijhoff Publishers, Dordrecht.
7.
Cokelet
 
G. R.
,
Merrill
 
E. W.
,
Gilliland
 
E. R.
,
Shin
 
H.
,
Britton
 
A.
, and
Wells
 
R. E.
,
1963
, “
The Rheology of Human Blood—Measurements Near and at Zero Shear Rate
,”
Trans. Soc. Rheol.
, Vol.
VII
, p.
303
303
.
8.
Copley
 
A. L.
,
1973
, “
On Biorheology, Joint Plenary Lecture
,”
Biorheology
, Vol.
10
, p.
87
87
.
9.
Copley
 
A. L.
,
King
 
R. G.
,
Chien
 
S.
,
Usmai
 
S.
,
Skalak
 
R.
, and
Huang
 
C. R.
,
1975
, “
Microscopic Observations of Viscoelasticity of Human Blood in Steady and Oscillatory Shear
,”
Biorheology
, Vol.
12
, p.
257
257
.
10.
Cox
 
R. H.
,
1975
, “
Pressure Dependence of the Mechanical Properties of Arteries In Vivo
,”
Am. J. Physiol.
, Vol.
228
, p.
1371
1371
.
11.
Dutta
 
A.
,
Wang
 
D. M.
, and
Tarbell
 
J. M.
,
1992
, “
Numerical Analysis of Flow in an Elastic Artery Model
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
114
, p.
26
26
.
12.
Easthope
 
P. L.
, and
Brooks
 
D.
,
1980
, “
A Comparison of Rheological Constitutive Functions for Whole Human Blood
,”
Biorheology
, Vol.
17
, p.
235
235
.
13.
Federspiel
 
W. J.
, and
Cokelet
 
G. R.
,
1984
, “
Blood Viscoelasticity for Conditions of Physiological Flow in Small Arteries
,”
Chem. Eng. Commun.
, Vol.
30
, p.
275
275
.
14.
Greenfield
 
J. C.
, and
Patel
 
D. J.
,
1962
, “
Relation Between Pressure and Diameter in the Ascending Aorta of Man
,”
Circ. Res.
, Vol.
10
, p.
778
778
.
15.
Liepsch
 
D.
, and
Moravec
 
S.
,
1984
, “
Pulsatile Flow of Non-Newtonian Fluid in Distensible Models of Human Arteries
,”
Biorheology
, Vol.
21
, p.
571
571
.
16.
Ling
 
S. C.
, and
Atabek
 
H. B.
,
1972
, “
A Nonlinear Analysis of Pulsatile Flow in Arteries
,”
J. Fluid Mech.
, Vol.
55
, p.
493
493
.
17.
Mann
 
D. E.
, and
Tarbell
 
J. M.
,
1990
, “
Flow of Non-Newtonian Blood Analog Fluids in Rigid Curved and Straight Artery Models
,”
Biorheology
, Vol.
27
, p.
711
711
.
18.
McDonald, D. A., 1974, Blood Flow in Arteries, 2nd ed., Edward Arnold Publishers, London.
19.
Merril, E. W., Margetts, W. G., Cokelet, G. R., Britten, A., Salzman, E. W., Pennell, R. B., and Melin, M., 1965, Proc. 4th Intl. Cong. Rheol., Vol. 4, p. 601, Interscience, New York.
20.
Milnor, W. R., 1989, Hemodynamics, 2nd ed., Williams and Wilkins, Baltimore.
21.
Moravec
 
S.
, and
Liepsch
 
D.
,
1983
, “
Flow Investigations in a Model of a Three-Dimensional Human Artery with Newtonian and Non-Newtonian Fluids, Part I.
,”
Biorheology
, Vol.
20
, p.
745
745
.
22.
Patel
 
D. J.
,
Greenfield
 
J. C.
,
Austen
 
W. G.
,
Morrow
 
A. G.
, and
Fry
 
D. L.
,
1965
, “
Pressure-Flow Relationships in the Ascending Aorta and Femoral Artery of Man
,”
J. Appl. Physiol.
, Vol.
20
, p.
459
459
.
23.
Patel
 
D. J.
,
Janicki
 
J. S.
,
Vaishnav
 
R. N.
, and
Young
 
J. T.
,
1973
, “
Dynamic Anisotropic Viscoelastic Properties of the Aorta in Living Dogs
,”
Circ. Res.
, Vol.
32
, p.
93
93
.
24.
Patel, D. J., and Vaishnav, R. N., 1980, Basic Hemodynamics and Its Rote in Disease Processes, University Park Press.
25.
Pedley, T. J., 1980, The Fluid Mechanics of Large Blood Vessels, Cambridge University Press.
26.
Rodkiewicz
 
C. M.
,
Sinha
 
P.
, and
Kennedy
 
J. S.
,
1990
, “
On the Application of a Constitutive Equation for Whole Human Blood
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
112
, p.
198
198
.
27.
Scott Blair
 
G. W.
,
1959
, “
An Equation for the Flow of Blood, Plasma, and Serum through Glass Capillaries
,”
Nature
, Vol.
183
, p.
613
613
.
28.
Thurston
 
G. B.
,
1975
, “
Elastic Effects in Pulsatile Blood Flow
,”
Microvasc. Res.
, Vol.
9
, p.
145
145
.
29.
Thurston
 
G. B.
,
1979
, “
Rheological Parameters for the Viscosity, Viscoelasticity and Thixotropy of Blood
,”
Biorheology
, Vol.
16
, p.
149
149
.
30.
Walburn
 
F. J.
, and
Schneck
 
D. J.
,
1976
, “
A Constitutive Equation for Whole Human Blood
,”
Biorheology
, Vol.
18
, p.
201
201
.
31.
Wang
 
D.-M.
, and
Tarbell
 
J. M.
,
1992
, “
Nonlinear Analysis of Flow in a Tube (Artery)—Steady Streaming Effects
,”
J. Fluid Mech.
, Vol.
239
, p.
341
341
.
32.
White, K. C., 1991, “Hemodynamics and Wall Shear Rate Measurements in the Abdominal Aorta of Dogs,” Ph.D. thesis, The Pennsylvania State University.
33.
Womersley
 
J. R.
,
1955
, “
Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient is Known
,”
J. Physiol.
, Vol.
127
, p.
553
553
.
This content is only available via PDF.
You do not currently have access to this content.