Abstract

This article represents an extensive literature on tire hydroplaning, specifically focusing on the assessment of real-time estimation methodologies and numerical modeling for both partial and total hydroplaning phenomenon. Hydroplaning still poses a significant challenge for contemporary passenger cars, even those equipped with state-of-the-art safety systems. The active safety features that equip the most technologically advanced passenger cars are unable to forecast and prevent the occurrence of hydroplaning. Total hydroplaning represents a phenomenon which occurs when the tire reaches a point where it can no longer expel the water from its tread grooves, leading to a complete control loss of the motor vehicle. This describes a scenario in which the entire contact patch is lifted from the ground due to the hydrodynamic forces generated at the contact between the tire and the layer of water formed on the road. Nevertheless, the decrease in contact between the tire and the road surface occurs gradually, a phenomenon which is presented in the literature as partial hydroplaning. The longitudinal speed that marks the transition from partial hydroplaning to total hydroplaning is defined as the critical hydroplaning speed. These principles are widely acknowledged among researchers in the hydroplaning field. Nonetheless, the literature review reveals variations for defining the critical hydroplaning speed threshold across different experimental investigations. In this article, past studies, and state-of-the-art research on tire hydroplaning has been reviewed, especially focusing on real-time estimation methodologies and numerical modeling of the partial and of the total hydroplaning phenomenon.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Vilsan
,
A.
, and
Sandu
,
C.
,
2023
, “
Hydroplaning of Tires: A Review of Numerical Modeling and Novel Sensing Methods
,”
Proceedings of the ASME IDETC/CIE2023
,
Boston, MA
,
Aug. 20–23
, Paper Number DETC2023-116314.
2.
Hermange
,
C.
,
Todoroff
,
V.
,
Biesse
,
F.
, and
Le-Chenadec
,
Y.
,
2022
, “
Experimental Investigation of the Leading Parameters Influencing the Hydroplaning Phenomenon
,”
Veh. Syst. Dyn.
,
60
(
7
), pp.
2375
2392
.
3.
Mounce
,
J. M.
, and
Bartoskewitz
,
R. T.
,
1993
, “
Hydroplaning and Roadway Tort Liability
,”
Transp. Res. Rec.
,
1401
, p.
117
.
4.
Horne
,
W. B.
, and
Joyner
,
U. T.
,
1965
, “
Pneumatic Tire Hydroplaning and Some Effects on Vehicle Performance
,”
SAE Trans.
,
V74-A
(
650145
), pp.
623
650
. ISSN: 0148-7191
5.
Niskanen
,
A. J.
, and
Tuononen
,
A. J.
,
2015
, “
Accelerometer Tyre to Estimate the Aquaplaning State of the Tyre–Road Contact
,”
2015 IEEE Intelligent Vehicles Symposium (IV)
,
Seoul, South Korea
,
June 28
, pp.
343
348
.
6.
Tuononen
,
A. J.
, and
Matilainen
,
M. J.
,
2009
, “
Real-Time Estimation of Aquaplaning With an Optical Tyre Sensor
,”
Proc. Inst. Mech. Eng. Part D: J. Autom. Eng.
,
223
(
10
), pp.
1263
1272
.
7.
Schmiedel
,
B.
,
Gauterin
,
F.
, and
Unrau
,
H. J.
,
2019
, “
Study of System Layouts for Road Wetness Quantification Via Tire Spray
,”
Autom. Engine Technol.
,
4
(
1
), pp.
63
73
.
8.
Fichtinger
,
A.
,
Edelmann
,
J.
,
Plochl
,
M.
, and
Holl
,
M.
,
2021
, “
Aquaplaning Detection Using Effect-Based Methods: An Approach Based on a Minimal Set of Sensors, Electronic Stability Control, and Drive Torques
,”
IEEE Veh. Technol. Mag.
,
16
(
3
), pp.
20
28
.
9.
Maleska
,
M.
,
Petry
,
F.
,
Fehr
,
D.
,
Schuhmann
,
W.
, and
Böhle
,
M.
,
2021
, “
Longitudinal Hydroplaning Performance of Passenger Car Tires
,”
Veh. Syst. Dyn.
,
59
(
3
), pp.
415
432
.
10.
Jansen
,
L. G.
, and
Stan
,
A. V.
,
1986
, “
Analysis of Hydroplaning Photos Using an Image Analyzer
,”
SAE Trans.
,
V95-86
(
860244
), pp.
31
35
.
11.
D’Alessandro
,
V.
,
Melzi
,
S.
,
Sbrosi
,
M.
, and
Brusarosco
,
M.
,
2012
, “
Phenomenological Analysis of Hydroplaning Through Intelligent Tyres
,”
Veh. Syst. Dyn.
,
50
(
Suppl. 1
), pp.
3
18
.
12.
Cheli
,
F.
,
2011
, “Cyber Tyre: A Novel Sensor to Improve Vehicle’s Safety,” No. 2011-01-0990, SAE Technical Paper.
13.
Horne
,
W. B.
, and
Dreher
,
R. C.
,
1963
, Phenomena of Pneumatic Tire Hydroplaning, National Aeronaustics and Space Administration, Washington, DC.
14.
Horne
,
W. B.
,
Yager
,
T. J.
, and
Iveyd
,
L.
,
1986
, “
Recent Studies to Investigate Effects of Tire Footprint Aspect Ratio on Dynamic Hydroplaning Speeds
,”
Am. Soc. Test. Mater.
,
ASTM STP 929
, pp.
26
46
.
15.
Gengenbach
,
W.
,
1968
, “
Experimental Investigation of Tires on Wet Pavements
,”
Autom. Technol. Mag.
,
70
, pp.
83
89
, 288–293, 310–316.
16.
Gallaway
,
B. M.
,
1979
, “
Pavement and Geometric Design Criteria for Minimizing Hydroplaning
,” Report No. FHWA-RD-79-31, Texas Transportation Institute, Federal Highway Administration.
17.
Gunaratne
,
M.
, and
Lu
,
Q.
,
2012
,
Hydroplaning on Multi Lane Facilities
, Vol.
BDK84 977-14
,
Florida Department of Transportation
,
Tallahassee, FL
.
18.
Huebner
,
R. S.
,
Anderson
,
D. A.
,
Warner
,
J. C.
, and
Reed
,
J. R.
,
1997
, “
PAVDRN: Computer Model for Predicting Water Film Thickness and Potential for Hydroplaning on New and Reconditioned Pavements
,”
Transp. Res. Rec.
,
1599
(
1
), pp.
128
131
.
19.
Anderson
,
D. A.
,
Huebner
,
R. S.
,
Reed
,
J. R.
,
Warner
,
J. C.
, and
Henry
,
J. J.
,
1998-6
,
Improved Surface Drainage of Pavements
.
20.
National Association of Austrialian State Road Authorities
,
1974
,
Drainage of Wide Flat Pavements
,
NAASRA
,
Sydney
.
21.
Ross
,
N. F.
, and
Russam
,
K.
,
1968
,
The depth of rain water on road surfaces."
, Vol.
LR 236
,
Road Research Laboratory, Ministry of Transport
, p.
25
.
22.
Chesterton
,
J.
,
Nancekivell
,
N.
, and
Tunnicliffe
,
N.
,
2006-10
, “
The Use of Gallaway Equation for Aquaplaning Evaluation in New Zealand
,”
Proceedings of the NZIHT and Transit NZ 8th Annual Conference
,
Auckland, New Zealand
,
p. 22
.
23.
Chen
,
X.
,
Wang
,
H.
,
Li
,
C.
,
Zhang
,
W.
, and
Xu
,
G.
,
2022
, “
Computational Investigation on Surface Water Distribution and Permeability of Porous Asphalt Pavement
,”
Int. J. Pavement Eng.
,
23
(
4
), pp.
1226
1238
.
24.
Chen
,
X.
, and
Wang
,
H.
,
2023
, “
Analysis and Mitigation of Hydroplaning Risk Considering Spatial-Temporal Water Condition on the Pavement Surface
,”
Int. J. Pavement Eng.
,
24
(
2
), p.
2036988
.
25.
Ding
,
Y.
, and
Wang
,
H.
,
2018
, “
Evaluation of Hydroplaning Risk on Permeable Friction Course Using Tire–Water–Pavement Interaction Model
,”
Transp. Res. Rec.
,
2672
(
40
), pp.
408
417
.
26.
Nazari
,
A.
,
Chen
,
L.
,
Battaglia
,
F.
,
Ferris
,
J. B.
,
Flintsch
,
G.
, and
Taheri
,
S.
,
2020
, “
Prediction of Hydroplaning Potential Using Fully Coupled Finite Element-Computational Fluid Dynamics Tire Models
,”
ASME J. Fluids Eng.
,
142
(
10
), p.
101202
.
27.
Ong
,
G. P.
, and
Fwa
,
T. F.
,
2008
, “
Modeling and Analysis of Truck Hydroplaning on Highways
,”
Transp. Res. Rec.
,
2068
(
1
), pp.
99
108
.
28.
Kumar
,
S. S.
,
Anupam
,
K.
,
Scarpas
,
T.
, and
Kasbergen
,
C.
,
2012
, “
Study of Hydroplaning Risk on Rolling and Sliding Passenger Car
,”
Proc. Soc. Behav. Sci.
,
53
, pp.
1019
1027
.
29.
Fwa
,
T. F.
,
Kumar
,
S. S.
,
Anupam
,
K.
, and
Ong
,
G. P.
,
2009
, “
Effectiveness of Tire-Tread Patterns in Reducing the Risk of Hydroplaning
,”
Transp. Res. Rec.
,
2094
(
1
), pp.
91
102
.
30.
Ding
,
Y. M.
, and
Wang
,
H.
,
2020
, “
Computational Investigation of Hydroplaning Risk of Wide-Base Truck Tyres on Roadway
,”
Int. J. Pavement Eng.
,
21
(
1
), pp.
122
133
.
31.
Jiang
,
B.
,
Chen
,
X.
, and
Wang
,
H.
,
2023
, “
Computational Analysis of Skid Resistance of Aircraft Tire on Wet Runway Pavement With Different Groove Depths
,”
Road Mater. Pavement Des.
,
24
(
7
), pp.
1651
1668
.
32.
Qian
,
J.
, and
Wang
,
H.
,
2022
, “
Analysis of Skid Resistance and Braking Distance of Aircraft Tire Landing on Grooved Runway Pavement
,”
Int. J. Pavement Eng.
,
24
(
2
), pp.
1
12
.
33.
Weyde
,
T.
,
Slaubaugh
,
G.
,
Fontaine
,
G.
, and
Bederna
,
C.
,
2013
, “
Predicting Aquaplaning Performance From Tyre Profile Images With Machine Learning
,”
Image Analysis and Recognition: 10th International Conference, ICIAR 2013
,
Póvoa do Varzim, Portugal
,
June 26–28
, pp.
133
142
.
34.
Lee
,
D.
,
Kim
,
J.-C.
,
Kim
,
M.
, and
Lee
,
H.
,
2021
, “
Intelligent Tire Sensor-Based Real-Time Road Surface Classification Using an Artificial Neural Network
,”
Sensors
,
21
(
9
), p.
3233
.
You do not currently have access to this content.