Abstract

Organic mixed ionic-electronic conductors (OMIECs) are a class of materials that can transport ionic and electronic charge carriers simultaneously. They have shown broad applications in soft robotics, electrochemical transistors, and bio-electronics. The structural response of OMIECs to the mixed conduction populates from molecular conformation to devices, presenting challenges in understanding their mechanical behavior and constitutive descriptions. Furthermore, OMIECs feature strong multiphysics interactions among mechanics, electrostatics, charge conduction, mass transport, and microstructural evolution. In this review, we summarize recent progress in mechanistic understanding of OMIECs and highlight dynamics and heterogeneity underlying each element of mechanics. We introduce strain activation and breathing, mechanical properties, and degradation of OMIECs upon electrochemical doping and dedoping. Drawing on the state-of-the-art experimental and simulation insights, we highlight the critical role of multiscale dynamics in governing the functionality of OMIECs. We discuss the current understanding and limitation of constitutive relations and present computational frameworks that integrate multiphysics. We synthesize mechanics-driven strategies—spanning strain modulation, material stretchability, and interfacial stability—from molecular design to macroscopic structural engineering. We conclude with our perspective on the outstanding questions and key challenges for continued research. This review aims to organize the fundamental mechanical principles of OMIECs, offering a multidisciplinary framework for researchers to identify, analyze, and address mechanical challenges in mixed conducting polymers and their applications.

References

1.
Zayat
,
B.
,
Das
,
P.
,
Thompson
,
B. C.
, and
Narayan
,
S. R.
,
2021
, “
In Situ Measurement of Ionic and Electronic Conductivities of Conductive Polymers as a Function of Electrochemical Doping in Battery Electrolytes
,”
J. Phys. Chem. C
,
125
(
14
), pp.
7533
7541
.10.1021/acs.jpcc.0c08934
2.
Rawlings
,
D.
,
Lee
,
D.
,
Kim
,
J.
,
Magdău
,
I.-B.
,
Pace
,
G.
,
Richardson
,
P. M.
,
Thomas
,
E. M.
, et al.,
2021
, “
Li+ and Oxidant Addition To Control Ionic and Electronic Conduction in Ionic Liquid-Functionalized Conjugated Polymers
,”
Chem. Mater.
,
33
(
16
), pp.
6464
6474
.10.1021/acs.chemmater.1c01811
3.
Cho
,
B.
,
Park
,
K. S.
,
Baek
,
J.
,
Oh
,
H. S.
,
Koo Lee
,
Y.-E.
, and
Sung
,
M. M.
,
2014
, “
Single-Crystal Poly(3,4-Ethylenedioxythiophene) Nanowires With Ultrahigh Conductivity
,”
Nano Lett.
,
14
(
6
), pp.
3321
3327
.10.1021/nl500748y
4.
Płocharski
,
J.
,
Pukacki
,
W.
, and
Roth
,
S.
,
1994
, “
Conductivity Study of Stretch-Oriented New Polyacetylene
,”
J. Polym. Sci. Part B Polym. Phys.
,
32
(
3
), pp.
447
451
.10.1002/polb.1994.090320305
5.
Tang
,
H.
,
Liang
,
Y.
,
Liu
,
C.
,
Hu
,
Z.
,
Deng
,
Y.
,
Guo
,
H.
,
Yu
,
Z.
,
Song
,
A.
,
Zhao
,
H.
,
Zhao
,
D.
,
Zhang
,
Y.
,
Guo
,
X.
,
Pei
,
J.
,
Ma
,
Y.
,
Cao
,
Y.
, and
Huang
,
F.
,
2022
, “
A Solution-Processed n-Type Conducting Polymer With Ultrahigh Conductivity
,”
Nature
,
611
(
7935
), pp.
271
277
.10.1038/s41586-022-05295-8
6.
Park
,
S.
,
Parida
,
K.
, and
Lee
,
P. S.
,
2017
, “
Deformable and Transparent Ionic and Electronic Conductors for Soft Energy Devices
,”
Adv. Energy Mater.
,
7
(
22
), p.
1701369
.10.1002/aenm.201701369
7.
Kousseff
,
C. J.
,
Halaksa
,
R.
,
Parr
,
Z. S.
, and
Nielsen
,
C. B.
,
2022
, “
Mixed Ionic and Electronic Conduction in Small-Molecule Semiconductors
,”
Chem. Rev.
,
122
(
4
), pp.
4397
4419
.10.1021/acs.chemrev.1c00314
8.
Parr
,
Z. S.
,
Rashid
,
R. B.
,
Paulsen
,
B. D.
,
Poggi
,
B.
,
Tan
,
E.
,
Freeley
,
M.
,
Palma
,
M.
,
Abrahams
,
I.
,
Rivnay
,
J.
, and
Nielsen
,
C. B.
,
2020
, “
Semiconducting Small Molecules as Active Materials for P-Type Accumulation Mode Organic Electrochemical Transistors
,”
Adv. Electron. Mater.
,
6
(
6
), p.
2000215
.10.1002/aelm.202000215
9.
Weng
,
B.
,
Ashraf
,
S.
,
Innis
,
P. C.
, and
Wallace
,
G. G.
,
2013
, “
Colour Tunable Electrochromic Devices Based on PProDOT-(Hx)2 and PProDOT-(EtHx)2 Polymers
,”
J. Mater. Chem. C
,
1
(
44
), pp.
7430
7439
.10.1039/c3tc31011f
10.
Paulsen
,
B. D.
,
Fabiano
,
S.
, and
Rivnay
,
J.
,
2021
, “
Mixed Ionic-Electronic Transport in Polymers
,”
Annu. Rev. Mater. Res.
,
51
(
1
), pp.
73
99
.10.1146/annurev-matsci-080619-101319
11.
Paulsen
,
B. D.
,
Tybrandt
,
K.
,
Stavrinidou
,
E.
, and
Rivnay
,
J.
,
2020
, “
Organic Mixed Ionic–Electronic Conductors
,”
Nat. Mater.
,
19
(
1
), pp.
13
26
.10.1038/s41563-019-0435-z
12.
Hinckley
,
A. C.
,
Andrews
,
S. C.
,
Dunham
,
M. T.
,
Sood
,
A.
,
Barako
,
M. T.
,
Schneider
,
S.
,
Toney
,
M. F.
,
Goodson
,
K. E.
, and
Bao
,
Z.
,
2021
, “
Achieving High Thermoelectric Performance and Metallic Transport in Solvent-Sheared PEDOT:PSS
,”
Adv. Electron. Mater.
,
7
(
3
), p.
2001190
.10.1002/aelm.202001190
13.
Wang
,
S.
,
Zuo
,
G.
,
Kim
,
J.
, and
Sirringhaus
,
H.
,
2022
, “
Progress of Conjugated Polymers as Emerging Thermoelectric Materials
,”
Prog. Polym. Sci.
,
129
, p.
101548
.10.1016/j.progpolymsci.2022.101548
14.
Gu
,
K.
,
Onorato
,
J. W.
,
Luscombe
,
C. K.
, and
Loo
,
Y.-L.
,
2020
, “
The Role of Tie Chains on the Mechano-Electrical Properties of Semiconducting Polymer Films
,”
Adv. Electron. Mater.
,
6
(
4
), p.
1901070
.10.1002/aelm.201901070
15.
Bässler
,
H.
, and
Köhler
,
A.
,
2012
, “
Charge Transport in Organic Semiconductors
,”
Unimolecular and Supramolecular Electronics I: Chemistry and Physics Meet at Metal-Molecule Interfaces
,
R.M.
Metzger
, ed.,
Springer
,
Berlin, Heidelberg
, pp.
1
65
.
16.
Mollinger
,
S. A.
,
Krajina
,
B. A.
,
Noriega
,
R.
,
Salleo
,
A.
, and
Spakowitz
,
A. J.
,
2015
, “
Percolation, Tie-Molecules, and the Microstructural Determinants of Charge Transport in Semicrystalline Conjugated Polymers
,”
ACS Macro Lett.
,
4
(
7
), pp.
708
712
.10.1021/acsmacrolett.5b00314
17.
Carré
,
A.
,
2007
, “
Polar Interactions at Liquid/Polymer Interfaces
,”
J. Adhes. Sci. Technol.
,
21
(
10
), pp.
961
981
.10.1163/156856107781393875
18.
Rigo
,
E.
,
Dong
,
Z.
,
Park
,
J. H.
,
Kennedy
,
E.
,
Hokmabadi
,
M.
,
Almonte-Garcia
,
L.
,
Ding
,
L.
,
Aluru
,
N.
, and
Timp
,
G.
,
2019
, “
Measurements of the Size and Correlations Between Ions Using an Electrolytic Point Contact
,”
Nat. Commun.
,
10
(
1
), p.
2382
.10.1038/s41467-019-10265-2
19.
Ratner
,
M. A.
, and
Shriver
,
D. F.
,
1988
, “
Ion Transport in Solvent-Free Polymers
,”
Chem. Rev.
,
88
(
1
), pp.
109
124
.10.1021/cr00083a006
20.
Yang
,
H.
, and
Wu
,
N.
,
2022
, “
Ionic Conductivity and Ion Transport Mechanisms of Solid-State Lithium-Ion Battery Electrolytes: A Review
,”
Energy Sci. Eng.
,
10
(
5
), pp.
1643
1671
.10.1002/ese3.1163
21.
Choi
,
P.
,
Jalani
,
N. H.
, and
Datta
,
R.
,
2005
, “
Thermodynamics and Proton Transport in Nafion: II. Proton Diffusion Mechanisms and Conductivity
,”
J. Electrochem. Soc.
,
152
(
3
), p.
E123
.10.1149/1.1859814
22.
Yang
,
X.
,
Sun
,
H.
,
He
,
X.
, and
Zhao
,
K.
,
2025
, “
Molecular Mechanism of Mechanical Breathing in Organic Mixed Ionic-Electronic Conductors
,”
Macromolecules
,
58
(
1
), pp.
45
60
.10.1021/acs.macromol.4c01893
23.
Zhong
,
D.
,
Xiang
,
Y.
,
Wang
,
Z.
,
Chen
,
Z.
,
Liu
,
J.
,
Wu
,
Z. L.
,
Xiao
,
R.
,
Qu
,
S.
, and
Yang
,
W.
,
2023
, “
A Visco-Hyperelastic Model for Hydrogels With Tunable Water Content
,”
J. Mech. Phys. Solids
,
173
, p.
105206
.10.1016/j.jmps.2023.105206
24.
Wang
,
X.
, and
Zhao
,
K.
,
2023
, “
A Continuum Theory of Organic Mixed Ionic-Electronic Conductors of Phase Separation
,”
J. Mech. Phys. Solids
,
172
, p.
105178
.10.1016/j.jmps.2022.105178
25.
Kusoglu
,
A.
, and
Weber
,
A. Z.
,
2017
, “
New Insights Into Perfluorinated Sulfonic-Acid Ionomers
,”
Chem. Rev.
,
117
(
3
), pp.
987
1104
.10.1021/acs.chemrev.6b00159
26.
Zhou
,
Y.
, and
Jin
,
L.
,
2023
, “
Mechanics Underpinning Phase Separation of Hydrogels
,”
Macromolecules
,
56
(
2
), pp.
426
439
.10.1021/acs.macromol.2c02356
27.
Ding
,
Z.
,
Zhao
,
K.
, and
Han
,
Y.
,
2025
, “
Strain-Induced Morphology Evolution and Charge Transport in Conjugated Polymer Films
,”
Interdiscip. Mater.
,
4
(
1
), pp.
138
161
.10.1002/idm2.12223
28.
Lu
,
Y.
,
Wang
,
J.-Y.
, and
Pei
,
J.
,
2021
, “
Achieving Efficient N-Doping of Conjugated Polymers by Molecular Dopants
,”
Acc. Chem. Res.
,
54
(
13
), pp.
2871
2883
.10.1021/acs.accounts.1c00223
29.
Wang
,
X.
,
Li
,
X.
,
Mei
,
J.
, and
Zhao
,
K.
,
2022
, “
Doping Kinetics in Organic Mixed Ionic–Electronic Conductors: Moving Front Experiments and the Stress Effect
,”
Ext. Mech. Lett.
,
54
, p.
101739
.10.1016/j.eml.2022.101739
30.
Chen
,
K.
,
Hu
,
H.
,
Song
,
I.
,
Gobeze
,
H. B.
,
Lee
,
W.-J.
,
Abtahi
,
A.
,
Schanze
,
K. S.
, and
Mei
,
J.
,
2023
, “
Organic Optoelectronic Synapse Based on Photon-Modulated Electrochemical Doping
,”
Nat. Photonics
,
17
(
7
), pp.
629
637
.10.1038/s41566-023-01232-x
31.
Bischak
,
C. G.
,
Flagg
,
L. Q.
,
Yan
,
K.
,
Rehman
,
T.
,
Davies
,
D. W.
,
Quezada
,
R. J.
,
Onorato
,
J. W.
,
Luscombe
,
C. K.
,
Diao
,
Y.
,
Li
,
C.-Z.
, and
Ginger
,
D. S.
,
2020
, “
A Reversible Structural Phase Transition by Electrochemically-Driven Ion Injection Into a Conjugated Polymer
,”
J. Am. Chem. Soc.
,
142
(
16
), pp.
7434
7442
.10.1021/jacs.9b12769
32.
Kaiser
,
A. B.
,
2001
, “
Systematic Conductivity Behavior in Conducting Polymers: Effects of Heterogeneous Disorder
,”
Adv. Mater.
,
13
(
12–13
), pp.
927
941
.10.1002/1521-4095(200107)13:12/13<927::AID-ADMA927>3.0.CO;2-B
33.
Jackson
,
S. R.
,
Kingsford
,
R. L.
,
Collins
,
G. W.
, and
Bischak
,
C. G.
,
2023
, “
Crystallinity Determines Ion Injection Kinetics and Local Ion Density in Organic Mixed Conductors
,”
Chem. Mater.
,
35
(
14
), pp.
5392
5400
.10.1021/acs.chemmater.3c00657
34.
Xie
,
R.
,
Colby
,
R. H.
, and
Gomez
,
E. D.
,
2018
, “
Connecting the Mechanical and Conductive Properties of Conjugated Polymers
,”
Adv. Electron. Mater.
,
4
(
10
), p.
1700356
.10.1002/aelm.201700356
35.
Sujanani
,
R.
,
Nguyen
,
P. H.
,
Gordon
,
L. W.
,
Bamford
,
J. T.
,
Zele
,
A.
,
Pedretti
,
B. J.
,
Lynd
,
N. A.
,
Clément
,
R. J.
, and
Segalman
,
R. A.
,
2025
, “
Influence of Water Sorption on Ionic Conductivity in Polyether Electrolytes at Low Hydration
,”
ACS Macro Lett.
,
14
(
1
), pp.
64
71
.10.1021/acsmacrolett.4c00707
36.
Quill
,
T. J.
,
LeCroy
,
G.
,
Marks
,
A.
,
Hesse
,
S. A.
,
Thiburce
,
Q.
,
McCulloch
,
I.
,
Tassone
,
C. J.
,
Takacs
,
C. J.
,
Giovannitti
,
A.
, and
Salleo
,
A.
,
2024
, “
Charge Carrier Induced Structural Ordering And Disordering in Organic Mixed Ionic Electronic Conductors
,”
Adv. Mater.
,
36
(
15
), p.
2310157
.10.1002/adma.202310157
37.
Sun
,
H.
,
Li
,
S.
,
Shen
,
Y.
,
Miao
,
F.
,
Zhang
,
P.
, and
Shao
,
G.
,
2020
, “
Integrated Structural Design of Polyaniline-Modified Nitrogen-Doped Hierarchical Porous Carbon Nanofibers as Binder-Free Electrodes Toward All-Solid-State Flexible Supercapacitors
,”
Appl. Surf. Sci.
,
501
, p.
144001
.10.1016/j.apsusc.2019.144001
38.
Shoa
,
T.
,
Madden
,
J. D.
,
Munce
,
N. R.
, and
Yang
,
V.
,
2010
, “
Analytical Modeling of a Conducting Polymer-Driven Catheter
,”
Polym. Int.
,
59
(
3
), pp.
343
351
.10.1002/pi.2783
39.
Correia
,
D. M.
,
Barbosa
,
J. C.
,
Costa
,
C. M.
,
Reis
,
P. M.
,
Esperança
,
J. M. S. S.
,
de Zea Bermudez
,
V.
, and
Lanceros-Méndez
,
S.
,
2019
, “
Ionic Liquid Cation Size-Dependent Electromechanical Response of Ionic Liquid/Poly(Vinylidene Fluoride)-Based Soft Actuators
,”
J. Phys. Chem. C
,
123
(
20
), pp.
12744
12752
.10.1021/acs.jpcc.9b00868
40.
Melling
,
D.
,
Martinez
,
J. G.
, and
Jager
,
E. W. H.
,
2019
, “
Conjugated Polymer Actuators and Devices: Progress and Opportunities
,”
Adv. Mater.
,
31
(
22
), p.
1808210
.10.1002/adma.201808210
41.
Shi
,
P.
,
Amb
,
C. M.
,
Knott
,
E. P.
,
Thompson
,
E. J.
,
Liu
,
D. Y.
,
Mei
,
J.
,
Dyer
,
A. L.
, and
Reynolds
,
J. R.
,
2010
, “
Broadly Absorbing Black to Transmissive Switching Electrochromic Polymers
,”
Adv. Mater.
,
22
(
44
), pp.
4949
4953
.10.1002/adma.201002234
42.
Li
,
X.
,
Perera
,
K.
,
He
,
J.
,
Gumyusenge
,
A.
, and
Mei
,
J.
,
2019
, “
Solution-Processable Electrochromic Materials and Devices: Roadblocks and Strategies Towards Large-Scale Applications
,”
J. Mater. Chem. C
,
7
(
41
), pp.
12761
12789
.10.1039/C9TC02861G
43.
Tang
,
S.
,
Sandström
,
A.
,
Lundberg
,
P.
,
Lanz
,
T.
,
Larsen
,
C.
,
van Reenen
,
S.
,
Kemerink
,
M.
, and
Edman
,
L.
,
2017
, “
Design Rules for Light-Emitting Electrochemical Cells Delivering Bright Luminance at 27.5 Percent External Quantum Efficiency
,”
Nat. Commun.
,
8
(
1
), p.
1190
.10.1038/s41467-017-01339-0
44.
Sandström
,
A.
,
Dam
,
H. F.
,
Krebs
,
F. C.
, and
Edman
,
L.
,
2012
, “
Ambient Fabrication of Flexible and Large-Area Organic Light-Emitting Devices Using Slot-Die Coating
,”
Nat. Commun.
,
3
(
1
), p.
1002
.10.1038/ncomms2002
45.
Ferhat
,
S.
,
Domain
,
C.
,
Vidal
,
J.
,
Noël
,
D.
,
Ratier
,
B.
, and
Lucas
,
B.
,
2018
, “
Organic Thermoelectric Devices Based on a Stable N-Type Nanocomposite Printed on Paper
,”
Sustain. Energy Fuels
,
2
(
1
), pp.
199
208
.10.1039/C7SE00313G
46.
Song
,
I.
,
Lee
,
W.-J.
,
Ke
,
Z.
,
You
,
L.
,
Chen
,
K.
,
Naskar
,
S.
,
Mehra
,
P.
, and
Mei
,
J.
,
2024
, “
An N-Doped Capacitive Transparent Conductor for All-Polymer Electrochromic Displays
,”
Nat. Electron.
,
7
(
12
), pp.
1158
1169
.10.1038/s41928-024-01293-y
47.
Dai
,
Y.
,
Dai
,
S.
,
Li
,
N.
,
Li
,
Y.
,
Moser
,
M.
,
Strzalka
,
J.
,
Prominski
,
A.
, et al.,
2022
, “
Stretchable Redox-Active Semiconducting Polymers for High-Performance Organic Electrochemical Transistors
,”
Adv. Mater.
,
34
(
23
), p.
2201178
.10.1002/adma.202201178
48.
Rivnay
,
J.
,
Inal
,
S.
,
Salleo
,
A.
,
Owens
,
R. M.
,
Berggren
,
M.
, and
Malliaras
,
G. G.
,
2018
, “
Organic Electrochemical Transistors
,”
Nat. Rev. Mater.
,
3
(
2
), pp.
1
14
.10.1038/natrevmats.2017.86
49.
Mabeck
,
J. T.
, and
Malliaras
,
G. G.
,
2005
, “
Chemical and Biological Sensors Based on Organic Thin-Film Transistors
,”
Anal. Bioanal. Chem.
,
384
(
2
), pp.
343
353
.10.1007/s00216-005-3390-2
50.
Lin
,
P.
, and
Yan
,
F.
,
2012
, “
Organic Thin-Film Transistors for Chemical and Biological Sensing
,”
Adv. Mater.
,
24
(
1
), pp.
34
51
.10.1002/adma.201103334
51.
Hu
,
C.
,
Wang
,
L.
,
Liu
,
S.
,
Sheng
,
X.
, and
Yin
,
L.
,
2024
, “
Recent Development of Implantable Chemical Sensors Utilizing Flexible and Biodegradable Materials for Biomedical Applications
,”
ACS Nano
,
18
(
5
), pp.
3969
3995
.10.1021/acsnano.3c11832
52.
Kim
,
J.
,
Pankow
,
R. M.
,
Cho
,
Y.
,
Duplessis
,
I. D.
,
Qin
,
F.
,
Meli
,
D.
,
Daso
,
R.
,
Zheng
,
D.
,
Huang
,
W.
,
Rivnay
,
J.
,
Marks
,
T. J.
, and
Facchetti
,
A.
,
2024
, “
Monolithically Integrated High-Density Vertical Organic Electrochemical Transistor Arrays and Complementary Circuits
,”
Nat. Electron.
,
7
(
3
), pp.
234
243
.10.1038/s41928-024-01127-x
53.
Gumyusenge
,
A.
,
Melianas
,
A.
,
Keene
,
S. T.
, and
Salleo
,
A.
,
2021
, “
Materials Strategies for Organic Neuromorphic Devices
,”
Annu. Rev. Mater. Res.
,
51
(
1
), pp.
47
71
.10.1146/annurev-matsci-080619-111402
54.
Liang
,
Y.
,
Che
,
C.
,
Tang
,
H.
,
Zhang
,
K.
,
Lan
,
L.
,
Zhou
,
C.
,
Ma
,
Y.
, and
Huang
,
F.
,
2023
, “
Influence of Interaction Between Electrolyte With Side-Chain Free Conjugated Polymer on the Performance of Organic Electrochemical Transistors
,”
ACS Appl. Mater. Interfaces
,
16
(
16
), pp.
19977
19986
.10.1021/acsami.3c13781
55.
Wang
,
X.
,
Chen
,
K.
,
de Vasconcelos
,
L. S.
,
He
,
J.
,
Shin
,
Y. C.
,
Mei
,
J.
, and
Zhao
,
K.
,
2020
, “
Mechanical Breathing in Organic Electrochromics
,”
Nat. Commun.
,
11
(
1
), p.
211
.10.1038/s41467-019-14047-8
56.
Das
,
P.
,
Zayat
,
B.
,
Wei
,
Q.
,
Salamat
,
C. Z.
,
Magdău
,
I.-B.
,
Elizalde-Segovia
,
R.
,
Rawlings
,
D.
, et al.,
2020
, “
Dihexyl-Substituted Poly(3,4-Propylenedioxythiophene) as a Dual Ionic and Electronic Conductive Cathode Binder for Lithium-Ion Batteries
,”
Chem. Mater.
,
32
(
21
), pp.
9176
9189
.10.1021/acs.chemmater.0c02601
57.
Szumska
,
A. A.
,
Maria
,
I. P.
,
Flagg
,
L. Q.
,
Savva
,
A.
,
Surgailis
,
J.
,
Paulsen
,
B. D.
,
Moia
,
D.
, et al.,
2021
, “
Reversible Electrochemical Charging of N-Type Conjugated Polymer Electrodes in Aqueous Electrolytes
,”
J. Am. Chem. Soc.
,
143
(
36
), pp.
14795
14805
.10.1021/jacs.1c06713
58.
Tsarfati
,
Y.
,
Bustillo
,
K. C.
,
Savitzky
,
B. H.
,
Balhorn
,
L.
,
Quill
,
T. J.
,
Marks
,
A.
,
Donohue
,
J.
, et al.,
2025
, “
The Hierarchical Structure of Organic Mixed Ionic–Electronic Conductors and Its Evolution in Water
,”
Nat. Mater.
,
24
(
1
), pp.
101
108
.10.1038/s41563-024-02016-6
59.
Tyagi
,
M.
,
Fathollahzadeh
,
M.
,
Martinez
,
J. G.
,
Mak
,
W. C.
,
Filippini
,
D.
, and
Jager
,
E. W. H.
,
2023
, “
Radially Actuating Conducting Polymer Microactuators as Gates for Dynamic Microparticle Sieve Based on Printed Microfluidics
,”
Sens. Actuators B Chem.
,
382
, p.
133448
.10.1016/j.snb.2023.133448
60.
Dimov
,
I. B.
,
Moser
,
M.
,
Malliaras
,
G. G.
, and
McCulloch
,
I.
,
2022
, “
Semiconducting Polymers for Neural Applications
,”
Chem. Rev.
,
122
(
4
), pp.
4356
4396
.10.1021/acs.chemrev.1c00685
61.
Kang
,
J.
,
Mun
,
J.
,
Zheng
,
Y.
,
Koizumi
,
M.
,
Matsuhisa
,
N.
,
Wu
,
H.-C.
,
Chen
,
S.
,
Tok
,
J. B.-H.
,
Lee
,
G. H.
,
Jin
,
L.
, and
Bao
,
Z.
,
2022
, “
Tough-Interface-Enabled Stretchable Electronics Using Non-Stretchable Polymer Semiconductors and Conductors
,”
Nat. Nanotechnol.
,
17
(
12
), pp.
1265
1271
.10.1038/s41565-022-01246-6
62.
Su
,
X.
,
Wu
,
X.
,
Chen
,
S.
,
Nedumaran
,
A. M.
,
Stephen
,
M.
,
Hou
,
K.
,
Czarny
,
B.
, and
Leong
,
W. L.
,
2022
, “
A Highly Conducting Polymer for Self-Healable, Printable, and Stretchable Organic Electrochemical Transistor Arrays and Near Hysteresis-Free Soft Tactile Sensors
,”
Adv. Mater.
,
34
(
19
), p.
2200682
.10.1002/adma.202200682
63.
Wang
,
X.
,
de Vasconcelos
,
L. S.
,
Chen
,
K.
,
Perera
,
K.
,
Mei
,
J.
, and
Zhao
,
K.
,
2020
, “
In Situ Measurement of Breathing Strain and Mechanical Degradation in Organic Electrochromic Polymers
,”
ACS Appl. Mater. Interfaces
,
12
(
45
), pp.
50889
50895
.10.1021/acsami.0c15390
64.
Root
,
S. E.
,
Savagatrup
,
S.
,
Printz
,
A. D.
,
Rodriquez
,
D.
, and
Lipomi
,
D. J.
,
2017
, “
Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics
,”
Chem. Rev.
,
117
(
9
), pp.
6467
6499
.10.1021/acs.chemrev.7b00003
65.
Paleti
,
S. H. K.
,
Kim
,
Y.
,
Kimpel
,
J.
,
Craighero
,
M.
,
Haraguchi
,
S.
, and
Müller
,
C.
,
2024
, “
Impact of Doping on the Mechanical Properties of Conjugated Polymers
,”
Chem. Soc. Rev.
,
53
(
4
), pp.
1702
1729
.10.1039/D3CS00833A
66.
Xiang
,
Y.
,
Zhong
,
D.
,
Rudykh
,
S.
,
Zhou
,
H.
,
Qu
,
S.
, and
Yang
,
W.
,
2020
, “
A Review of Physically Based and Thermodynamically Based Constitutive Models for Soft Materials
,”
ASME J. Appl. Mech.
,
87
(
11
), p.
110801
.10.1115/1.4047776
67.
Boyce
,
M. C.
, and
Arruda
,
E. M.
,
2000
, “
Constitutive Models of Rubber Elasticity: A Review
,”
Rubber Chem. Technol.
,
73
(
3
), pp.
504
523
.10.5254/1.3547602
68.
Zhang
,
B.
,
Xiang
,
L.
,
Yan
,
C.
,
Jiang
,
Z.
,
Zhao
,
H.
,
Li
,
C.
, and
Zhang
,
F.
,
2024
, “
Morphology-Controlled Ion Transport in Mixed-Orientation Polymers
,”
ACS Appl. Mater. Interfaces
,
16
(
25
), pp.
32456
32465
.10.1021/acsami.4c04485
69.
Odin
,
C.
, and
Nechtschein
,
M.
,
1991
, “
Slow Relaxation in Conducting Polymers
,”
Phys. Rev. Lett.
,
67
(
9
), pp.
1114
1117
.10.1103/PhysRevLett.67.1114
70.
Bakulin
,
A. A.
,
Martyanov
,
D. S.
,
Paraschuk
,
D. Y.
,
Pshenichnikov
,
M. S.
, and
van Loosdrecht
,
P. H. M.
,
2008
, “
Ultrafast Charge Photogeneration Dynamics in Ground-State Charge-Transfer Complexes Based on Conjugated Polymers
,”
J. Phys. Chem. B
,
112
(
44
), pp.
13730
13737
.10.1021/jp8048839
71.
Aziz
,
I. A.
,
Gladisch
,
J.
,
Musumeci
,
C.
,
Moser
,
M.
,
Griggs
,
S.
,
Kousseff
,
C. J.
,
Berggren
,
M.
,
McCulloch
,
I.
, and
Stavrinidou
,
E.
,
2024
, “
Electrochemical Modulation of Mechanical Properties of Glycolated Polythiophenes
,”
Mater. Horiz.
,
11
(
8
), pp.
2021
2031
.10.1039/D3MH01827J
72.
Gladisch
,
J.
,
Stavrinidou
,
E.
,
Ghosh
,
S.
,
Giovannitti
,
A.
,
Moser
,
M.
,
Zozoulenko
,
I.
,
McCulloch
,
I.
, and
Berggren
,
M.
,
2020
, “
Reversible Electronic Solid–Gel Switching of a Conjugated Polymer
,”
Adv. Sci.
,
7
(
2
), p.
1901144
.10.1002/advs.201901144
73.
Abrantes
,
L. M.
,
Correia
,
J. P.
,
Savic
,
M.
, and
Jin
,
G.
,
2001
, “
Structural Modifications During Conducting Polymer Formation — An Ellipsometric Study
,”
Electrochim. Acta
,
46
(
20–21
), pp.
3181
3187
.10.1016/S0013-4686(01)00610-7
74.
Richter
,
S.
,
Rebarz
,
M.
,
Herrfurth
,
O.
,
Espinoza
,
S.
,
Schmidt-Grund
,
R.
, and
Andreasson
,
J.
,
2021
, “
Broadband Femtosecond Spectroscopic Ellipsometry
,”
Rev. Sci. Instrum
,.,
92
(
3
), p.
033104
.10.1063/5.0027219
75.
Della Santa
,
A.
,
De Rossi
,
D.
, and
Mazzoldi
,
A.
,
1997
, “
Performance and Work Capacity of a Polypyrrole Conducting Polymer Linear Actuator
,”
Synth. Met.
,
90
(
2
), pp.
93
100
.10.1016/S0379-6779(97)81256-8
76.
Wang
,
Y.
,
Chen
,
K.-L.
,
Awada
,
A.
,
Prine
,
N.
,
Cao
,
Z.
,
Zhu
,
C.
,
Chiu
,
Y.-C.
,
Rondeau-Gagné
,
S.
, and
Gu
,
X.
,
2023
, “
Leveraging Non-Covalent Interactions to Control the Morphology and Electrical and Mechanical Properties of Stretchable Semiconducting Composites
,”
Chem. Mater.
,
35
(
22
), pp.
9713
9724
.10.1021/acs.chemmater.3c02131
77.
Zhang
,
S.
,
Ocheje
,
M. U.
,
Luo
,
S.
,
Ehlenberg
,
D.
,
Appleby
,
B.
,
Weller
,
D.
,
Zhou
,
D.
,
Rondeau-Gagné
,
S.
, and
Gu
,
X.
,
2018
, “
Probing the Viscoelastic Property of Pseudo Free-Standing Conjugated Polymeric Thin Films
,”
Macromol. Rapid Commun.
,
39
(
14
), p.
1800092
.10.1002/marc.201800092
78.
Schumacher
,
R.
,
Borges
,
G.
, and
Kanazawa
,
K. K.
,
1985
, “
The Quartz Microbalance: A Sensitive Tool to Probe Surface Reconstructions on Gold Electrodes in Liquid
,”
Surf. Sci. Lett.
,
163
(
1
), pp.
L621
L626
.10.1016/0167-2584(85)90839-4
79.
Easley
,
A. D.
,
Ma
,
T.
,
Eneh
,
C. I.
,
Yun
,
J.
,
Thakur
,
R. M.
, and
Lutkenhaus
,
J. L.
,
2022
, “
A Practical Guide to Quartz Crystal Microbalance With Dissipation Monitoring of Thin Polymer Films
,”
J. Polym. Sci.
,
60
(
7
), pp.
1090
1107
.10.1002/pol.20210324
80.
Wang
,
S.
,
Li
,
F.
,
Easley
,
A. D.
, and
Lutkenhaus
,
J. L.
,
2019
, “
Real-Time Insight Into the Doping Mechanism of Redox-Active Organic Radical Polymers
,”
Nat. Mater.
,
18
(
1
), pp.
69
75
.10.1038/s41563-018-0215-1
81.
Ohayon
,
D.
,
Druet
,
V.
, and
Inal
,
S.
,
2023
, “
A Guide for the Characterization of Organic Electrochemical Transistors and Channel Materials
,”
Chem. Soc. Rev.
,
52
(
3
), pp.
1001
1023
.10.1039/D2CS00920J
82.
Umeda
,
K.
,
McArthur
,
S. J.
, and
Kodera
,
N.
,
2023
, “
Spatiotemporal Resolution in High-Speed Atomic Force Microscopy for Studying Biological Macromolecules in Action
,”
Microscopy
,
72
(
2
), pp.
151
161
.10.1093/jmicro/dfad011
83.
Giridharagopal
,
R.
,
Flagg
,
L. Q.
,
Harrison
,
J. S.
,
Ziffer
,
M. E.
,
Onorato
,
J.
,
Luscombe
,
C. K.
, and
Ginger
,
D. S.
,
2017
, “
Electrochemical Strain Microscopy Probes Morphology-Induced Variations in Ion Uptake and Performance in Organic Electrochemical Transistors
,”
Nat. Mater.
,
16
(
7
), pp.
737
742
.10.1038/nmat4918
84.
Balke
,
N.
,
Jesse
,
S.
,
Kim
,
Y.
,
Adamczyk
,
L.
,
Tselev
,
A.
,
Ivanov
,
IN.
,
Dudney
,
N. J.
, and
Kalinin
,
S. V.
,
2010
, “
Real Space Mapping of Li-Ion Transport in Amorphous Si Anodes With Nanometer Resolution
,”
Nano Lett.
,
10
(
9
), pp.
3420
3425
.10.1021/nl101439x
85.
Paulsen
,
B. D.
,
Wu
,
R.
,
Takacs
,
C. J.
,
Steinrück
,
H.-G.
,
Strzalka
,
J.
,
Zhang
,
Q.
,
Toney
,
M. F.
, and
Rivnay
,
J.
,
2020
, “
Time-Resolved Structural Kinetics of an Organic Mixed Ionic–Electronic Conductor
,”
Adv. Mater.
,
32
(
40
), p.
2003404
.10.1002/adma.202003404
86.
Isnard
,
O.
,
2007
, “
A Review of In Situ and/or Time Resolved Neutron Scattering
,”
C. R. Phys.
,
8
(
7–8
), pp.
789
805
.10.1016/j.crhy.2007.10.002
87.
Kim
,
T.
,
Oh
,
S.
,
Choudhry
,
U.
,
Meinhart
,
C. D.
,
Chabinyc
,
M. L.
, and
Liao
,
B.
,
2021
, “
Transient Strain-Induced Electronic Structure Modulation in a Semiconducting Polymer Imaged by Scanning Ultrafast Electron Microscopy
,”
Nano Lett.
,
21
(
21
), pp.
9146
9152
.10.1021/acs.nanolett.1c02963
88.
Panova
,
O.
,
Ophus
,
C.
,
Takacs
,
C. J.
,
Bustillo
,
K. C.
,
Balhorn
,
L.
,
Salleo
,
A.
,
Balsara
,
N.
, and
Minor
,
A. M.
,
2019
, “
Diffraction Imaging of Nanocrystalline Structures in Organic Semiconductor Molecular Thin Films
,”
Nat. Mater.
,
18
(
8
), pp.
860
865
.10.1038/s41563-019-0387-3
89.
Kuei
,
B.
,
Bator
,
C.
, and
Gomez
,
E. D.
,
2020
, “
Imaging 0.36 Nm Lattice Planes in Conjugated Polymers by Minimizing Beam Damage
,”
Macromolecules
,
53
(
19
), pp.
8296
8302
.10.1021/acs.macromol.0c01082
90.
Lolla
,
D.
,
Gorse
,
J.
,
Kisielowski
,
C.
,
Miao
,
J.
,
Taylor
,
P. L.
,
Chase
,
G. G.
, and
Reneker
,
D. H.
,
2016
, “
Polyvinylidene Fluoride Molecules in Nanofibers, Imaged at Atomic Scale by Aberration Corrected Electron Microscopy
,”
Nanoscale
,
8
(
1
), pp.
120
128
.10.1039/C5NR01619C
91.
Kuei
,
B.
,
Aplan
,
M. P.
,
Litofsky
,
J. H.
, and
Gomez
,
E. D.
,
2020
, “
New Opportunities in Transmission Electron Microscopy of Polymers
,”
Mater. Sci. Eng. R Rep.
,
139
, p.
100516
.10.1016/j.mser.2019.100516
92.
McCulloch
,
B.
,
Ho
,
V.
,
Hoarfrost
,
M.
,
Stanley
,
C.
,
Do
,
C.
,
Heller
,
W. T.
, and
Segalman
,
R. A.
,
2013
, “
Polymer Chain Shape of Poly(3-Alkylthiophenes) in Solution Using Small-Angle Neutron Scattering
,”
Macromolecules
,
46
(
5
), pp.
1899
1907
.10.1021/ma302463d
93.
Cao
,
Z.
,
Li
,
Z.
,
Zhang
,
S.
,
Galuska
,
L.
,
Li
,
T.
,
Do
,
C.
,
Xia
,
W.
,
Hong
,
K.
, and
Gu
,
X.
,
2020
, “
Decoupling Poly(3-Alkylthiophenes)' Backbone and Side-Chain Conformation by Selective Deuteration and Neutron Scattering
,”
Macromolecules
,
53
(
24
), pp.
11142
11152
.10.1021/acs.macromol.0c02086
94.
Kwok
,
J. J.
,
Park
,
K. S.
,
Patel
,
B. B.
,
Dilmurat
,
R.
,
Beljonne
,
D.
,
Zuo
,
X.
,
Lee
,
B.
, and
Diao
,
Y.
,
2022
, “
Understanding Solution State Conformation and Aggregate Structure of Conjugated Polymers Via Small Angle X-Ray Scattering
,”
Macromolecules
,
55
(
11
), pp.
4353
4366
.10.1021/acs.macromol.1c02449
95.
Kuei
,
B. D.
, and
Gomez
,
E.
,
2017
, “
Chain Conformations and Phase Behavior of Conjugated Polymers
,”
Soft Matter
,
13
(
1
), pp.
49
67
.10.1039/C6SM00979D
96.
Balhorn
,
L.
,
MacPherson
,
Q.
,
Bustillo
,
K. C.
,
Takacs
,
C. J.
,
Spakowitz
,
A. J.
, and
Salleo
,
A.
,
2022
, “
Closing the Loop Between Microstructure and Charge Transport in Conjugated Polymers by Combining Microscopy and Simulation
,”
Proc. Natl. Acad. Sci.
,
119
(
46
), p.
e2204346119
.10.1073/pnas.2204346119
97.
Luo
,
S.
,
Li
,
N.
,
Zhang
,
S.
,
Zhang
,
C.
,
Qu
,
T.
,
Ocheje
,
M. U.
,
Xue
,
G.
,
Gu
,
X.
,
Rondeau-Gagné
,
S.
,
Hu
,
W.
,
Wang
,
S.
,
Teng
,
C.
,
Zhou
,
D.
, and
Xu
,
J.
,
2021
, “
Observation of Stepwise Ultrafast Crystallization Kinetics of Donor–Acceptor Conjugated Polymers and Correlation With Field Effect Mobility
,”
Chem. Mater.
,
33
(
5
), pp.
1637
1647
.10.1021/acs.chemmater.0c03854
98.
Flory
,
P. J.
,
1950
, “
Statistical Mechanics of Swelling of Network Structures
,”
J. Chem. Phys
,.,
18
(
1
), pp.
108
111
.10.1063/1.1747424
99.
Chen
,
S. E.
,
Flagg
,
L. Q.
,
Onorato
,
J. W.
,
Richter
,
L. J.
,
Guo
,
J.
,
Luscombe
,
C. K.
, and
Ginger
,
D. S.
,
2022
, “
Impact of Varying Side Chain Structure on Organic Electrochemical Transistor Performance: A Series of Oligoethylene Glycol-Substituted Polythiophenes
,”
J. Mater. Chem. A
,
10
(
19
), pp.
10738
10749
.10.1039/D2TA00683A
100.
Moser
,
M.
,
Wang
,
Y.
,
Cecilia Hidalgo
,
T.
,
Liao
,
H.
,
Yu
,
Y.
,
Chen
,
J.
,
Duan
,
J.
, et al.,
2022
, “
Propylene and Butylene Glycol: New Alternatives to Ethylene Glycol in Conjugated Polymers for Bioelectronic Applications
,”
Mater. Horiz.
,
9
(
3
), pp.
973
980
.10.1039/D1MH01889B
101.
Surgailis
,
J.
,
Savva
,
A.
,
Druet
,
V.
,
Paulsen
,
B. D.
,
Wu
,
R.
,
Hamidi-Sakr
,
A.
,
Ohayon
,
D.
,
Nikiforidis
,
G.
,
Chen
,
X.
,
McCulloch
,
I.
,
Rivnay
,
J.
, and
Inal
,
S.
,
2021
, “
Mixed Conduction in an N-Type Organic Semiconductor in the Absence of Hydrophilic Side-Chains
,”
Adv. Funct. Mater.
,
31
(
21
), p.
2010165
.10.1002/adfm.202010165
102.
Guo
,
J.
,
Flagg
,
L. Q.
,
Tran
,
D. K.
,
Chen
,
S. E.
,
Li
,
R.
,
Kolhe
,
N. B.
,
Giridharagopal
,
R.
,
Jenekhe
,
S. A.
,
Richter
,
L. J.
, and
Ginger
,
D. S.
,
2023
, “
Hydration of a Side-Chain-Free n-Type Semiconducting Ladder Polymer Driven by Electrochemical Doping
,”
J. Am. Chem. Soc.
,
145
(
3
), pp.
1866
1876
.10.1021/jacs.2c11468
103.
Surgailis
,
J.
,
Flagg
,
L. Q.
,
Richter
,
L. J.
,
Druet
,
V.
,
Griggs
,
S.
,
Wu
,
X.
,
Moro
,
S.
, et al.,
2024
, “
The Role of Side Chains and Hydration on Mixed Charge Transport in N-Type Polymer Films
,”
Adv. Mater.
,
36
(
51
), p.
2313121
.10.1002/adma.202313121
104.
Jeong
,
D.
,
Jo
,
I.-Y.
,
Lee
,
S.
,
Kim
,
J. H.
,
Kim
,
Y.
,
Kim
,
D.
,
Reynolds
,
J. R.
,
Yoon
,
M.-H.
, and
Kim
,
B. J.
,
2022
, “
High-Performance n-Type Organic Electrochemical Transistors Enabled by Aqueous Solution Processing of Amphiphilicity-Driven Polymer Assembly
,”
Adv. Funct. Mater.
,
32
(
16
), p.
2111950
.10.1002/adfm.202111950
105.
Nicolini
,
T.
,
Surgailis
,
J.
,
Savva
,
A.
,
Scaccabarozzi
,
A. D.
,
Nakar
,
R.
,
Thuau
,
D.
,
Wantz
,
G.
,
Richter
,
L. J.
,
Dautel
,
O.
,
Hadziioannou
,
G.
, and
Stingelin
,
N.
,
2021
, “
A Low-Swelling Polymeric Mixed Conductor Operating in Aqueous Electrolytes
,”
Adv. Mater.
,
33
(
2
), p.
2005723
.10.1002/adma.202005723
106.
Advincula
,
A. A.
,
Jones
,
A. L.
,
Thorley
,
K. J.
,
Österholm
,
A. M.
,
Ponder
,
J. F.
Jr.
, and
Reynolds
,
J. R.
,
2022
, “
Probing Comonomer Selection Effects on Dioxythiophene-Based Aqueous-Compatible Polymers for Redox Applications
,”
Chem. Mater.
,
34
(
10
), pp.
4633
4645
.10.1021/acs.chemmater.2c00511
107.
Sun
,
Z.
,
Khau
,
B.
,
Dong
,
H.
,
Takacs
,
C. J.
,
Yuan
,
S.
,
Sun
,
M.
,
Mosevitzky Lis
,
B.
,
Nguyen
,
D.
, and
Reichmanis
,
E.
,
2023
, “
Carboxyl-Alkyl Functionalized Conjugated Polyelectrolytes for High Performance Organic Electrochemical Transistors
,”
Chem. Mater.
,
35
(
21
), pp.
9299
9312
.10.1021/acs.chemmater.3c02103
108.
Moser
,
M.
,
Gladisch
,
J.
,
Ghosh
,
S.
,
Hidalgo
,
T. C.
,
Ponder
,
J. F.
, Jr.
,
Sheelamanthula
,
R.
,
Thiburce
,
Q.
, et al.,
2021
, “
Controlling Electrochemically Induced Volume Changes in Conjugated Polymers by Chemical Design: From Theory to Devices
,”
Adv. Funct. Mater
,
31
(
26
), p.
2100723
.10.1002/adfm.202100723
109.
Lan
,
L.
,
Chen
,
J.
,
Wang
,
Y.
,
Li
,
P.
,
Yu
,
Y.
,
Zhu
,
G.
,
Li
,
Z.
,
Lei
,
T.
,
Yue
,
W.
, and
McCulloch
,
I.
,
2022
, “
Facilely Accessible Porous Conjugated Polymers Toward High-Performance and Flexible Organic Electrochemical Transistors
,”
Chem. Mater.
,
34
(
4
), pp.
1666
1676
.10.1021/acs.chemmater.1c03797
110.
Schmode
,
P.
,
Savva
,
A.
,
Kahl
,
R.
,
Ohayon
,
D.
,
Meichsner
,
F.
,
Dolynchuk
,
O.
,
Thurn-Albrecht
,
T.
,
Inal
,
S.
, and
Thelakkat
,
M.
,
2020
, “
The Key Role of Side Chain Linkage in Structure Formation and Mixed Conduction of Ethylene Glycol Substituted Polythiophenes
,”
ACS Appl. Mater. Interfaces
,
12
(
11
), pp.
13029
13039
.10.1021/acsami.9b21604
111.
Hallani
,
R. K.
,
Paulsen
,
B. D.
,
Petty
,
A. J. I.
,
Sheelamanthula
,
R.
,
Moser
,
M.
,
Thorley
,
K. J.
,
Sohn
,
W.
, et al
.
,
2021
, “
Regiochemistry-Driven Organic Electrochemical Transistor Performance Enhancement in Ethylene Glycol-Functionalized Polythiophenes
,”
J. Am. Chem. Soc.
,
143
(
29
), pp.
11007
11018
.10.1021/jacs.1c03516
112.
Moser
,
M.
,
Hidalgo
,
T. C.
,
Surgailis
,
J.
,
Gladisch
,
J.
,
Ghosh
,
S.
,
Sheelamanthula
,
R.
,
Thiburce
,
Q.
, et al.,
2020
, “
Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stability
,”
Adv. Mater.
,
32
(
37
), p.
2002748
.10.1002/adma.202002748
113.
Perera
,
K.
,
Wu
,
W.
,
You
,
L.
,
Elman
,
J. F.
,
Wang
,
Z.
,
Wang
,
X.
,
Ahmed
,
M.
,
Ke
,
Z.
, and
Mei
,
J.
,
2023
, “
Absorption Coefficient and Optical Contrast Modulation Through Side Chain Engineering of Electrochromic Polymers
,”
Macromolecules
,
56
(
2
), pp.
480
489
.10.1021/acs.macromol.2c02028
114.
Ding
,
B.
,
Jo
,
I.-Y.
,
Yu
,
H.
,
Kim
,
J. H.
,
Marsh
,
A. V.
,
Gutiérrez-Fernández
,
E.
, et al.,
2023
, “
Enhanced Organic Electrochemical Transistor Performance of Donor–Acceptor Conjugated Polymers Modified With Hybrid Glycol/Ionic Side Chains by Postpolymerization Modification
,”
Chem. Mater.
,
35
(
8
), pp.
3290
3299
.10.1021/acs.chemmater.3c00327
115.
Siemons
,
N.
,
Pearce
,
D.
,
Cendra
,
C.
,
Yu
,
H.
,
Tuladhar
,
S. M.
,
Hallani
,
R. K.
,
Sheelamanthula
,
R.
, et al.,
2022
, “
Impact of Side-Chain Hydrophilicity on Packing, Swelling, and Ion Interactions in Oxy-Bithiophene Semiconductors
,”
Adv. Mater.
,
34
(
39
), p.
2204258
.10.1002/adma.202204258
116.
Wang
,
K.
,
Huang
,
L.
,
Eedugurala
,
N.
,
Zhang
,
S.
,
Sabuj
,
M. A.
,
Rai
,
N.
,
Gu
,
X.
,
Azoulay
,
J. D.
, and
Ng
,
T. N.
,
2019
, “
Wide Potential Window Supercapacitors Using Open-Shell Donor–Acceptor Conjugated Polymers With Stable N-Doped States
,”
Adv. Energy Mater.
,
9
(
47
), p.
1902806
.10.1002/aenm.201902806
117.
Perera
,
K.
,
Yi
,
Z.
,
You
,
L.
,
Ke
,
Z.
, and
Mei
,
J.
,
2020
, “
Conjugated Electrochromic Polymers With Amide-Containing Side Chains Enabling Aqueous Electrolyte Compatibility
,”
Polym. Chem.
,
11
(
2
), pp.
508
516
.10.1039/C9PY01066A
118.
Liu
,
K.
,
Perera
,
K.
,
Wang
,
Z.
,
Mei
,
J.
, and
Boudouris
,
B. W.
,
2021
, “
Impact of Open-Shell Loading on Mass Transport and Doping in Conjugated Radical Polymers
,”
J. Polym. Sci.
,
59
(
22
), pp.
2771
2782
.10.1002/pol.20210512
119.
Zhao
,
X.
,
Alsufyani
,
M.
,
Tian
,
J.
,
Lin
,
Y.
,
Jeong
,
S. Y.
,
Woo
,
H. Y.
,
Yin
,
Y.
, and
McCulloch
,
I.
,
2024
, “
High Efficiency N-Type Doping of Organic Semiconductors by Cation Exchange
,”
Adv. Mater.
,
36
(
47
), p.
2412811
.10.1002/adma.202412811
120.
Flagg
,
L. Q.
,
Bischak
,
C. G.
,
Quezada
,
R. J.
,
Onorato
,
J. W.
,
Luscombe
,
C. K.
, and
Ginger
,
D. S.
,
2020
, “
P-Type Electrochemical Doping Can Occur by Cation Expulsion in a High-Performing Polymer for Organic Electrochemical Transistors
,”
ACS Mater. Lett.
,
2
(
3
), pp.
254
260
.10.1021/acsmaterialslett.9b00501
121.
Guo
,
J.
,
Chen
,
S. E.
,
Giridharagopal
,
R.
,
Bischak
,
C. G.
,
Onorato
,
J. W.
,
Yan
,
K.
,
Shen
,
Z.
,
Li
,
C.-Z.
,
Luscombe
,
C. K.
, and
Ginger
,
D. S.
,
2024
, “
Understanding Asymmetric Switching Times in Accumulation Mode Organic Electrochemical Transistors
,”
Nat. Mater.
,
23
(
5
), pp.
656
663
.10.1038/s41563-024-01875-3
122.
Keene
,
S. T.
,
Laulainen
,
J. E. M.
,
Pandya
,
R.
,
Moser
,
M.
,
Schnedermann
,
C.
,
Midgley
,
P. A.
,
McCulloch
,
I.
,
Rao
,
A.
, and
Malliaras
,
G. G.
,
2023
, “
Hole-Limited Electrochemical Doping in Conjugated Polymers
,”
Nat. Mater.
,
22
(
9
), pp.
1121
1127
.10.1038/s41563-023-01601-5
123.
Keene
,
S. T.
,
Rao
,
A. G.
, and
Malliaras
,
G.
,
2023
, “
The Relationship Between Ionic-Electronic Coupling and Transport in Organic Mixed Conductors
,”
Sci. Adv.
,
9
(
35
), p.
eadi3536
.10.1126/sciadv.adi3536
124.
Rolston
,
N.
,
Watson
,
B. L.
,
Bailie
,
C. D.
,
McGehee
,
M. D.
,
Bastos
,
J. P.
,
Gehlhaar
,
R.
,
Kim
,
J.-E.
,
Vak
,
D.
,
Mallajosyula
,
A. T.
,
Gupta
,
G.
,
Mohite
,
A. D.
, and
Dauskardt
,
R. H.
,
2016
, “
Mechanical Integrity of Solution-Processed Perovskite Solar Cells
,”
Extreme Mech. Lett.
,
9
, pp.
353
358
.10.1016/j.eml.2016.06.006
125.
Balar
,
N.
, and
O'Connor
,
B. T.
,
2017
, “
Correlating Crack Onset Strain and Cohesive Fracture Energy in Polymer Semiconductor Films
,”
Macromolecules
,
50
(
21
), pp.
8611
8618
.10.1021/acs.macromol.7b01282
126.
Chen
,
A. X.
,
Kleinschmidt
,
A. T.
,
Choudhary
,
K.
, and
Lipomi
,
D. J.
,
2020
, “
Beyond Stretchability: Strength, Toughness, and Elastic Range in Semiconducting Polymers
,”
Chem. Mater.
,
32
(
18
), pp.
7582
7601
.10.1021/acs.chemmater.0c03019
127.
Seitz
,
J. T.
,
1993
, “
The Estimation of Mechanical Properties of Polymers From Molecular Structure
,”
J. Appl. Polym. Sci.
,
49
(
8
), pp.
1331
1351
.10.1002/app.1993.070490802
128.
Savagatrup
,
S.
,
Makaram
,
A. S.
,
Burke
,
D. J.
, and
Lipomi
,
D. J.
,
2014
, “
Mechanical Properties of Conjugated Polymers and Polymer-Fullerene Composites as a Function of Molecular Structure
,”
Adv. Funct. Mater.
,
24
(
8
), pp.
1169
1181
.10.1002/adfm.201302646
129.
Chung
,
S.
,
Kim
,
S. H.
,
Ok
,
E.
,
Kim
,
B. J.
,
Kang
,
B.
, and
Cho
,
K.
,
2024
, “
Structural Insights Into Conjugated Polymers for Stretchable Organic Transistors
,”
Chem. Mater.
,
36
(
1
), pp.
74
98
.10.1021/acs.chemmater.3c02394
130.
Galuska
,
L. A.
,
Muckley
,
E. S.
,
Cao
,
Z.
,
Ehlenberg
,
D. F.
,
Qian
,
Z.
,
Zhang
,
S.
,
Rondeau-Gagné
,
S.
,
Phan
,
M. D.
,
Ankner
,
J. F.
,
Ivanov
,
IN.
, and
Gu
,
X.
,
2021
, “
SMART Transfer Method to Directly Compare the Mechanical Response of Water-Supported and Free-Standing Ultrathin Polymeric Films
,”
Nat. Commun.
,
12
(
1
), p.
2347
.10.1038/s41467-021-22473-w
131.
Zhuo
,
Z.
,
Ni
,
M.
,
Yu
,
N.
,
Zheng
,
Y.
,
Lin
,
Y.
,
Yang
,
J.
,
Sun
,
L.
,
Wang
,
L.
,
Bai
,
L.
,
Chen
,
W.
,
Xu
,
M.
,
Huo
,
F.
,
Lin
,
J.
,
Feng
,
Q.
, and
Huang
,
W.
,
2024
, “
Intrinsically Stretchable Fully π-Conjugated Polymer Film Via Fluid Conjugated Molecular External-Plasticizing for Flexible Light-Emitting Diodes
,”
Nat. Commun.
,
15
(
1
), p.
7990
.10.1038/s41467-024-50358-1
132.
Song
,
R.
,
Schrickx
,
H.
,
Balar
,
N.
,
Siddika
,
S.
,
Sheikh
,
N.
, and
O'Connor
,
B. T.
,
2020
, “
Unveiling the Stress–Strain Behavior of Conjugated Polymer Thin Films for Stretchable Device Applications
,”
Macromolecules
,
53
(
6
), pp.
1988
1997
.10.1021/acs.macromol.9b02573
133.
Kim
,
J.-H.
,
Nizami
,
A.
,
Hwangbo
,
Y.
,
Jang
,
B.
,
Lee
,
H.-J.
,
Woo
,
C.-S.
,
Hyun
,
S.
, and
Kim
,
T.-S.
,
2013
, “
Tensile Testing of Ultra-Thin Films on Water Surface
,”
Nat. Commun.
,
4
(
1
), p.
2520
.10.1038/ncomms3520
134.
Choi
,
J.
,
Kim
,
W.
,
Kim
,
D.
,
Kim
,
S.
,
Chae
,
J.
,
Choi
,
S. Q.
,
Kim
,
F. S.
,
Kim
,
T.-S.
, and
Kim
,
B. J.
,
2019
, “
Importance of Critical Molecular Weight of Semicrystalline N-Type Polymers for Mechanically Robust, Efficient Electroactive Thin Films
,”
Chem. Mater.
,
31
(
9
), pp.
3163
3173
.10.1021/acs.chemmater.8b05114
135.
Printz
,
A. D.
,
Zaretski
,
A. V.
,
Savagatrup
,
S.
,
Chiang
,
A. S.-C.
, and
Lipomi
,
D. J.
,
2015
, “
Yield Point of Semiconducting Polymer Films on Stretchable Substrates Determined by Onset of Buckling
,”
ACS Appl. Mater. Interfaces
,
7
(
41
), pp.
23257
23264
.10.1021/acsami.5b08628
136.
Son
,
S. Y.
,
Lee
,
G.
,
Wang
,
H.
,
Samson
,
S.
,
Wei
,
Q.
,
Zhu
,
Y.
, and
You
,
W.
,
2022
, “
Integrating Charge Mobility, Stability and Stretchability Within Conjugated Polymer Films for Stretchable Multifunctional Sensors
,”
Nat. Commun.
,
13
(
1
), p.
2739
.10.1038/s41467-022-30361-0
137.
Zhao
,
D.
,
Kim
,
D.
,
Ghosh
,
S.
,
Wang
,
G.
,
Huang
,
W.
,
Zhu
,
Z.
,
Marks
,
T. J.
,
Zozoulenko
,
I.
, and
Facchetti
,
A.
,
2024
, “
Mechanical, Morphological, and Charge Transport Properties of NDI Polymers With Variable Built-in Π-Conjugation Lengths Probed by Simulation and Experiment
,”
Adv. Funct. Mater.
,
34
(
4
), p.
2310071
.10.1002/adfm.202310071
138.
Wang
,
G.-J. N.
,
Gasperini
,
A.
, and
Bao
,
Z.
,
2018
, “
Stretchable Polymer Semiconductors for Plastic Electronics
,”
Adv. Electron. Mater.
,
4
(
2
), p.
1700429
.10.1002/aelm.201700429
139.
Martín
,
J.
,
Muñoz
,
M.
,
Encinar
,
M.
,
Calleja
,
M.
, and
Martín-González
,
M.
,
2014
, “
Fabrication and Mechanical Characterization of Semi-Free-Standing (Conjugated) Polymer Thin Films
,”
Langmuir
,
30
(
18
), pp.
5217
5223
.10.1021/la4032267
140.
Young
,
T. J.
,
Monclus
,
M. A.
,
Burnett
,
T. L.
,
Broughton
,
W. R.
,
Ogin
,
S. L.
, and
Smith
,
P. A.
,
2011
, “
The Use of the PeakForceTM Quantitative Nanomechanical Mapping AFM-Based Method for High-Resolution Young's Modulus Measurement of Polymers
,”
Meas. Sci. Technol.
,
22
(
12
), p.
125703
.10.1088/0957-0233/22/12/125703
141.
Panchal
,
V.
,
Dobryden
,
I.
,
Hangen
,
U. D.
,
Simatos
,
D.
,
Spalek
,
L. J.
,
Jacobs
,
I. E.
,
Schweicher
,
G.
,
Claesson
,
P. M.
, and
Venkateshvaran
,
D.
,
2022
, “
Mechanical Properties of Organic Electronic Polymers on the Nanoscale
,”
Adv. Electron. Mater.
,
8
(
3
), p.
2101019
..10.1002/aelm.202101019
142.
Xiao
,
M.
,
Sadhanala
,
A.
,
Abdi‐Jalebi
,
M.
,
Thomas
,
T. H.
,
Ren
,
X.
,
Zhang
,
T.
,
Chen
,
H.
,
Carey
,
R. L.
,
Wang
,
Q.
,
Senanayak
,
S. P.
, and
Jellett
,
C.
,
2021
, “
Linking Glass‐Transition Behavior to Photophysical and Charge Transport Properties of High‐Mobility Conjugated Polymers
,”
Adv. Funct. Mater.
,
31
(
7
), p.
2007359
.10.1002/adfm.202007359
143.
Shpigel
,
N.
,
Levi
,
M. D.
,
Sigalov
,
S.
,
Daikhin
,
L.
, and
Aurbach
,
D.
,
2018
, “
In Situ Real-Time Mechanical and Morphological Characterization of Electrodes for Electrochemical Energy Storage and Conversion by Electrochemical Quartz Crystal Microbalance With Dissipation Monitoring
,”
Acc. Chem. Res.
,
51
(
1
), pp.
69
79
.10.1021/acs.accounts.7b00477
144.
Chen
,
Q.
,
Xu
,
S.
,
Liu
,
Q.
,
Masliyah
,
J.
, and
Xu
,
Z.
,
2016
, “
QCM-D Study of Nanoparticle Interactions
,”
Adv. Colloid Interface Sci.
,
233
, pp.
94
114
.10.1016/j.cis.2015.10.004
145.
Tummala
,
N. R.
,
Risko
,
C.
,
Bruner
,
C.
,
Dauskardt
,
R. H.
, and
Brédas
,
J.-L.
,
2015
, “
Entanglements in P3HT and Their Influence on Thin-Film Mechanical Properties: Insights From Molecular Dynamics Simulations
,”
J. Polym. Sci. Part B Polym. Phys.
,
53
(
13
), pp.
934
942
.10.1002/polb.23722
146.
Wang
,
Y.
,
Li
,
Z.
,
Niu
,
K.
,
Xia
,
W.
, and
Giuntoli
,
A.
,
2024
, “
A Molecular Dynamics Study of Mechanical and Conformational Properties of Conjugated Polymer Thin Films
,”
Macromolecules
,
57
(
11
), pp.
5130
5142
.10.1021/acs.macromol.4c00232
147.
Root
,
S. E.
,
Savagatrup
,
S.
,
Pais
,
C. J.
,
Arya
,
G.
, and
Lipomi
,
D. J.
,
2016
, “
Predicting the Mechanical Properties of Organic Semiconductors Using Coarse-Grained Molecular Dynamics Simulations
,”
Macromolecules
,
49
(
7
), pp.
2886
2894
.10.1021/acs.macromol.6b00204
148.
Rodriquez
,
D.
,
Kim
,
J.-H.
,
Root
,
S. E.
,
Fei
,
Z.
,
Boufflet
,
P.
,
Heeney
,
M.
,
Kim
,
T.-S.
, and
Lipomi
,
D. J.
,
2017
, “
Comparison of Methods for Determining the Mechanical Properties of Semiconducting Polymer Films for Stretchable Electronics
,”
ACS Appl. Mater. Interfaces
,
9
(
10
), pp.
8855
8862
.10.1021/acsami.6b16115
149.
Tahk
,
D.
,
Lee
,
H. H.
, and
Khang
,
D.-Y.
,
2009
, “
Elastic Moduli of Organic Electronic Materials by the Buckling Method
,”
Macromolecules
,
42
(
18
), pp.
7079
7083
.10.1021/ma900137k
150.
Mefferd
,
B. E.
,
Nambiar
,
V. V.
,
Lu
,
H.
, and
Stefan
,
M. C.
,
2023
, “
Viscoelastic Characterization of Poly(3-Hexylthiophene): Determination of Young's Modulus
,”
ACS Appl. Polym. Mater.
,
5
(
8
), pp.
6318
6324
.10.1021/acsapm.3c00939
151.
Maddali
,
H.
,
House
,
K. L.
,
Emge
,
T. J.
, and
O'Carroll
,
D. M.
,
2020
, “
Identification of the Local Electrical Properties of Crystalline and Amorphous Domains in Electrochemically Doped Conjugated Polymer Thin Films
,”
RSC Adv.
,
10
(
36
), pp.
21454
21463
.10.1039/D0RA02796K
152.
House
,
K. L.
,
Christian
,
K. H.
,
Emge
,
T. J.
,
Pacheco
,
H.
,
Haber
,
R. A.
, and
O'Carroll
,
D. M.
,
2024
, “
Characterization of Nanoscale Morphology and Mechanical Properties of Conjugated Polymer Thin Films Dynamically Exposed to a Secondary Solvent
,”
Polymers
,
293
, p.
126625
.10.1016/j.polymer.2023.126625
153.
Xie
,
R.
,
Lee
,
Y.
,
Aplan
,
M. P.
,
Caggiano
,
N. J.
,
Müller
,
C.
,
Colby
,
R. H.
, and
Gomez
,
E. D.
,
2017
, “
Glass Transition Temperature of Conjugated Polymers by Oscillatory Shear Rheometry
,”
Macromolecules
,
50
(
13
), pp.
5146
5154
.10.1021/acs.macromol.7b00712
154.
Song
,
J.
,
Hsu
,
D. D.
,
Shull
,
K. R.
,
Phelan
,
F. R.
Jr.
,
Douglas
,
J. F.
,
Xia
,
W.
, and
Keten
,
S.
,
2018
, “
Energy Renormalization Method for the Coarse-Graining of Polymer Viscoelasticity
,”
Macromolecules
,
51
(
10
), pp.
3818
3827
.10.1021/acs.macromol.7b02560
155.
Mikie
,
T.
, and
Osaka
,
I.
,
2020
, “
Small-Bandgap Quinoid-Based π-Conjugated Polymers
,”
J. Mater. Chem. C
,
8
(
41
), pp.
14262
14288
.10.1039/D0TC01041C
156.
Alkahtani
,
M. E.
,
Elbadawi
,
M.
,
Chapman
,
C. A. R.
,
Green
,
R. A.
,
Gaisford
,
S.
,
Orlu
,
M.
, and
Basit
,
A. W.
,
2024
, “
Electroactive Polymers for On-Demand Drug Release
,”
Adv. Healthc. Mater.
,
13
(
3
), p.
e2301759
.10.1002/adhm.202301759
157.
Jacobs
,
I. E.
,
D'Avino
,
G.
,
Lemaur
,
V.
,
Lin
,
Y.
,
Huang
,
Y.
,
Chen
,
C.
,
Harrelson
,
T. F.
, et al.,
2022
, “
Structural and Dynamic Disorder, Not Ionic Trapping, Controls Charge Transport in Highly Doped Conducting Polymers
,”
J. Am. Chem. Soc.
,
144
(
7
), pp.
3005
3019
.10.1021/jacs.1c10651
158.
de Vasconcelos
,
L. S.
,
Xu
,
R.
, and
Zhao
,
K.
,
2020
, “
Quantitative Spatiotemporal Li Profiling Using Nanoindentation
,”
J. Mech. Phys. Solids
,
144
, p.
104102
.10.1016/j.jmps.2020.104102
159.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.10.1063/1.1712836
160.
Rivlin
,
R. S.
, and
Rideal
,
E. K.
,
1997
, “
Large Elastic Deformations of Isotropic Materials IV. Further Developments of the General Theory
,”
Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Sci.
,
241
(
835
), pp.
379
397
.10.1098/rsta.1948.0024
161.
Doi
,
M.
, and
Edwards
,
S. F.
,
1988
,
The Theory of Polymer Dynamics
,
Oxford University Press
,
Oxford, New York
.
162.
Cho
,
K. S.
,
2016
, “
Nonlinear Constitutive Equations
,”
Viscoelasticity of Polymers: Theory and Numerical Algorithms
,
K. S.
Cho
, ed.,
Springer Netherlands
,
Dordrecht, The Netherlands
, pp.
491
543
.
163.
Ogden
,
R. W.
, and
Roxburgh
,
D. G.
,
1999
, “
A Pseudo–Elastic Model for the Mullins Effect in Filled Rubber
,”
Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci.
,
455
(
1988
), pp.
2861
2877
.10.1098/rspa.1999.0431
164.
Marckmann
,
G.
,
Verron
,
E.
,
Gornet
,
L.
,
Chagnon
,
G.
,
Charrier
,
P.
, and
Fort
,
P.
,
2002
, “
A Theory of Network Alteration for the Mullins Effect
,”
J. Mech. Phys. Solids
,
50
(
9
), pp.
2011
2028
.10.1016/S0022-5096(01)00136-3
165.
Bristow
,
G. M.
, and
Westall
,
B.
,
1967
, “
The Molecular Weight Distribution of Natural Rubber
,”
Polymers
,
8
, pp.
609
617
.10.1016/0032-3861(67)90071-7
166.
Galuska
,
L. A.
,
McNutt
,
W. W.
,
Qian
,
Z.
,
Zhang
,
S.
,
Weller
,
D. W.
,
Dhakal
,
S.
,
King
,
E. R.
,
Morgan
,
S. E.
,
Azoulay
,
J. D.
,
Mei
,
J.
, and
Gu
,
X.
,
2020
, “
Impact of Backbone Rigidity on the Thermomechanical Properties of Semiconducting Polymers With Conjugation Break Spacers
,”
Macromolecules
,
53
(
14
), pp.
6032
6042
.10.1021/acs.macromol.0c00889
167.
Kayser
,
L. V.
,
Russell
,
M. D.
,
Rodriquez
,
D.
,
Abuhamdieh
,
S. N.
,
Dhong
,
C.
,
Khan
,
S.
,
Stein
,
A. N.
,
Ramírez
,
J.
, and
Lipomi
,
D. J.
,
2018
, “
RAFT Polymerization of an Intrinsically Stretchable Water-Soluble Block Copolymer Scaffold for PEDOT
,”
Chem. Mater.
,
30
(
13
), pp.
4459
4468
.10.1021/acs.chemmater.8b02040
168.
Bernards
,
D. A.
, and
Malliaras
,
G. G.
,
2007
, “
Steady-State and Transient Behavior of Organic Electrochemical Transistors
,”
Adv. Funct. Mater.
,
17
(
17
), pp.
3538
3544
.10.1002/adfm.200601239
169.
Kaphle
,
V.
,
Paudel
,
P. R.
,
Dahal
,
D.
,
Radha Krishnan
,
R. K.
, and
Lüssem
,
B.
,
2020
, “
Finding the Equilibrium of Organic Electrochemical Transistors
,”
Nat. Commun.
,
11
(
1
), p.
2515
.10.1038/s41467-020-16252-2
170.
Ghasemi
,
M.
,
Balar
,
N.
,
Peng
,
Z.
,
Hu
,
H.
,
Qin
,
Y.
,
Kim
,
T.
,
Rech
,
J. J.
, et al.,
2021
, “
A Molecular Interaction–Diffusion Framework for Predicting Organic Solar Cell Stability
,”
Nat. Mater.
,
20
(
4
), pp.
525
532
.10.1038/s41563-020-00872-6
171.
Flagg
,
L. Q.
,
Bischak
,
C. G.
,
Onorato
,
J. W.
,
Rashid
,
R. B.
,
Luscombe
,
C. K.
, and
Ginger
,
D. S.
,
2019
, “
Polymer Crystallinity Controls Water Uptake in Glycol Side-Chain Polymer Organic Electrochemical Transistors
,”
J. Am. Chem. Soc.
,
141
(
10
), pp.
4345
4354
.10.1021/jacs.8b12640
172.
Collins
,
G. W.
,
Lone
,
M. S.
,
Jackson
,
S. R.
,
Keller
,
J. N.
,
Kingsford
,
R. L.
,
Noriega
,
R.
, and
Bischak
,
C. G.
,
2024
, “
Photoluminescence Probes Ion Insertion Into Amorphous and Crystalline Regions of Organic Mixed Conductors
,”
Adv. Funct. Mater.
,
34
(
40
), p.
2403710
.10.1002/adfm.202403710
173.
Yeo
,
J.-S.
,
Yun
,
J.-M.
,
Kim
,
D.-Y.
,
Park
,
S.
,
Kim
,
S.-S.
,
Yoon
,
M.-H.
,
Kim
,
T.-W.
, and
Na
,
S.-I.
,
2012
, “
Significant Vertical Phase Separation in Solvent-Vapor-Annealed Poly(3,4-Ethylenedioxythiophene):Poly(Styrene Sulfonate) Composite Films Leading to Better Conductivity and Work Function for High-Performance Indium Tin Oxide-Free Optoelectronics
,”
ACS Appl. Mater. Interfaces
,
4
(
5
), pp.
2551
2560
.10.1021/am300231v
174.
Ouyang
,
L.
,
Musumeci
,
C.
,
Jafari
,
M. J.
,
Ederth
,
T.
, and
Inganäs
,
O.
,
2015
, “
Imaging the Phase Separation Between PEDOT and Polyelectrolytes During Processing of Highly Conductive PEDOT:PSS Films
,”
ACS Appl. Mater. Interfaces
,
7
(
35
), pp.
19764
19773
.10.1021/acsami.5b05439
175.
Ding
,
Z.
,
Liu
,
D.
,
Zhao
,
K.
, and
Han
,
Y.
,
2021
, “
Optimizing Morphology to Trade Off Charge Transport and Mechanical Properties of Stretchable Conjugated Polymer Films
,”
Macromolecules
,
54
(
9
), pp.
3907
3926
.10.1021/acs.macromol.1c00268
176.
Melling
,
D. A.
,
Wilson
,
S. H.
, and
Jager
,
E. W.
,
2015
, “
Controlling the Electro-Mechanical Performance of Polypyrrole Through 3- and 3,4-Methyl Substituted Copolymers
,”
RSC Adv.
,
5
(
102
), pp.
84153
84163
.10.1039/C5RA15587H
177.
Tropp
,
J.
,
Meli
,
D.
,
Wu
,
R.
,
Xu
,
B.
,
Hunt
,
S. B.
,
Azoulay
,
J. D.
,
Paulsen
,
B. D.
, and
Rivnay
,
J.
,
2023
, “
Revealing the Impact of Molecular Weight on Mixed Conduction in Glycolated Polythiophenes Through Electrolyte Choice
,”
ACS Mater. Lett.
,
5
(
5
), pp.
1367
1375
.10.1021/acsmaterialslett.2c01114
178.
Siemons
,
N.
,
Pearce
,
D.
,
Yu
,
H.
,
Tuladhar
,
S. M.
,
LeCroy
,
G. S.
,
Sheelamanthula
,
R.
,
Hallani
,
R. K.
,
Salleo
,
A.
,
McCulloch
,
I.
,
Giovannitti
,
A.
,
Frost
,
J. M.
, and
Nelson
,
J.
,
2023
, “
Controlling Swelling in Mixed Transport Polymers Through Alkyl Side-Chain Physical Cross-Linking
,”
Proc. Natl. Acad. Sci.
,
120
(
35
), p.
e2306272120
.10.1073/pnas.2306272120
179.
Maria
,
I. P.
,
Paulsen
,
B. D.
,
Savva
,
A.
,
Ohayon
,
D.
,
Wu
,
R.
,
Hallani
,
R.
,
Basu
,
A.
, et al.,
2021
, “
The Effect of Alkyl Spacers on the Mixed Ionic-Electronic Conduction Properties of N-Type Polymers
,”
Adv. Funct. Mater.
,
31
(
14
), p.
2008718
.10.1002/adfm.202008718
180.
Modarresi
,
M.
, and
Zozoulenko
,
I.
,
2022
, “
Why Does Solvent Treatment Increase the Conductivity of PEDOT:PSS? Insight From Molecular Dynamics Simulations
,”
Phys. Chem. Chem. Phys.
,
24
(
36
), pp.
22073
22082
.10.1039/D2CP02655D
181.
Wu
,
R.
,
Paulsen
,
B. D.
,
Ma
,
Q.
,
McCulloch
,
I.
, and
Rivnay
,
J.
,
2023
, “
Quantitative Composition and Mesoscale Ion Distribution in P-Type Organic Mixed Ionic-Electronic Conductors
,”
ACS Appl. Mater. Interfaces
,
15
(
25
), pp.
30553
30566
.10.1021/acsami.3c04449
182.
Zheng
,
Y.
,
Wang
,
G.-J. N.
,
Kang
,
J.
,
Nikolka
,
M.
,
Wu
,
H.-C.
,
Tran
,
H.
,
Zhang
,
S.
, et al.,
2019
, “
An Intrinsically Stretchable High-Performance Polymer Semiconductor With Low Crystallinity
,”
Adv. Funct. Mater.
,
29
(
46
), p.
1905340
.10.1002/adfm.201905340
183.
Zheng
,
Y.
,
Ashizawa
,
M.
,
Zhang
,
S.
,
Kang
,
J.
,
Nikzad
,
S.
,
Yu
,
Z.
,
Ochiai
,
Y.
, et al.,
2020
, “
Tuning the Mechanical Properties of a Polymer Semiconductor by Modulating Hydrogen Bonding Interactions
,”
Chem. Mater.
,
32
(
13
), pp.
5700
5714
.10.1021/acs.chemmater.0c01437
184.
Craighero
,
M.
,
Guo
,
J.
,
Zokaei
,
S.
,
Griggs
,
S.
,
Tian
,
J.
,
Asatryan
,
J.
,
Kimpel
,
J.
, et al.,
2024
, “
Impact of Oligoether Side-Chain Length on the Thermoelectric Properties of a Polar Polythiophene
,”
ACS Appl. Electron. Mater.
,
6
(
5
), pp.
2909
2916
.10.1021/acsaelm.3c00936
185.
Dai
,
Y.
,
Wai
,
S.
,
Li
,
P.
,
Shan
,
N.
,
Cao
,
Z.
,
Li
,
Y.
,
Wang
,
Y.
, et al.,
2024
, “
Soft Hydrogel Semiconductors With Augmented Biointeractive Functions
,”
Science
,
386
(
6720
), pp.
431
439
.10.1126/science.adp9314
186.
Chen
,
J.
,
Huang
,
W.
,
Zheng
,
D.
,
Xie
,
Z.
,
Zhuang
,
X.
,
Zhao
,
D.
,
Chen
,
Y.
, et al.,
2022
, “
Highly Stretchable Organic Electrochemical Transistors With Strain-Resistant Performance
,”
Nat. Mater.
,
21
(
5
), pp.
564
571
.10.1038/s41563-022-01239-9
187.
Flagg
,
L. Q.
,
Giridharagopal
,
R.
,
Guo
,
J.
, and
Ginger
,
D. S.
,
2018
, “
Anion-Dependent Doping and Charge Transport in Organic Electrochemical Transistors
,”
Chem. Mater.
,
30
(
15
), pp.
5380
5389
.10.1021/acs.chemmater.8b02220
188.
Wei
,
B.
,
Liu
,
J.
,
Ouyang
,
L.
,
Kuo
,
C.-C.
, and
Martin
,
D. C.
,
2015
, “
Significant Enhancement of PEDOT Thin Film Adhesion to Inorganic Solid Substrates With EDOT-Acid
,”
ACS Appl. Mater. Interfaces
,
7
(
28
), pp.
15388
15394
.10.1021/acsami.5b03350
189.
Ouyang
,
L.
,
Wei
,
B.
,
Kuo
,
C.
,
Pathak
,
S.
,
Farrell
,
B.
, and
Martin
,
D. C.
,
2017
, “
Enhanced PEDOT Adhesion on Solid Substrates With Electrografted P(EDOT-NH2)
,”
Sci. Adv.
,
3
(
3
), p.
e1600448
.10.1126/sciadv.1600448
190.
Villemin
,
E.
,
Lemarque
,
B.
,
,
T. T.
,
Nguyen
,
V. Q.
,
Trippé-Allard
,
G.
,
Martin
,
P.
,
Lacaze
,
P.-C.
, and
Lacroix
,
J.-C.
,
2019
, “
Improved Adhesion of Poly(3,4-Ethylenedioxythiophene) (PEDOT) Thin Film to Solid Substrates Using Electrografted Promoters and Application to Efficient Nanoplasmonic Devices
,”
Synth. Met.
,
248
, pp.
45
52
.10.1016/j.synthmet.2018.12.010
191.
Wang
,
Y.
,
Zeglio
,
E.
,
Liao
,
H.
,
Xu
,
J.
,
Liu
,
F.
,
Li
,
Z.
,
Maria
,
I. P.
,
Mawad
,
D.
,
Herland
,
A.
,
McCulloch
,
I.
, and
Yue
,
W.
,
2019
, “
Hybrid Alkyl–Ethylene Glycol Side Chains Enhance Substrate Adhesion and Operational Stability in Accumulation Mode Organic Electrochemical Transistors
,”
Chem. Mater.
,
31
(
23
), pp.
9797
9806
.10.1021/acs.chemmater.9b03798
192.
Gu
,
K.
, and
Loo
,
Y.-L.
,
2019
, “
The Polymer Physics of Multiscale Charge Transport in Conjugated Systems
,”
J. Polym. Sci. Part B Polym. Phys.
,
57
(
23
), pp.
1559
1571
.10.1002/polb.24873
193.
Zuo
,
J. M.
,
Vartanyants
,
I.
,
Gao
,
M.
,
Zhang
,
R.
, and
Nagahara
,
L. A.
,
2003
, “
Atomic Resolution Imaging of a Carbon Nanotube From Diffraction Intensities
,”
Science
,
300
(
5624
), pp.
1419
1421
.10.1126/science.1083887
194.
Wang
,
S.
,
Wang
,
Y.
,
Cai
,
X.
,
Wang
,
B.
,
Zhao
,
C.
,
Pan
,
G.
,
Harder
,
C.
, et al.,
2025
, “
A High-Frequency Artificial Nerve Based on Homogeneously Integrated Organic Electrochemical Transistors
,”
Nat. Electron.
,
8
(
3
), pp.
254
266
.10.1038/s41928-025-01357-7
195.
Ke
,
Z.
,
Abtahi
,
A.
,
Hwang
,
J.
,
Chen
,
K.
,
Chaudhary
,
J.
,
Song
,
I.
,
Perera
,
K.
,
You
,
L.
,
Baustert
,
K. N.
,
Graham
,
K. R.
, and
Mei
,
J.
,
2023
, “
Highly Conductive and Solution-Processable n-Doped Transparent Organic Conductor
,”
J. Am. Chem. Soc.
,
145
(
6
), pp.
3706
3715
.10.1021/jacs.2c13051
196.
Guan
,
C.
,
Xiao
,
C.
,
Liu
,
X.
,
Hu
,
Z.
,
Wang
,
R.
,
Wang
,
C.
,
Xie
,
C.
,
Cai
,
Z.
, and
Li
,
W.
,
2023
, “
Non-Covalent Interactions Between Polyvinyl Chloride and Conjugated Polymers Enable Excellent Mechanical Properties and High Stability in Organic Solar Cells
,”
Angew. Chem. Int. Ed.
,
62
(
44
), p.
e202312357
.10.1002/anie.202312357
197.
Rivnay
,
J.
,
Inal
,
S.
,
Collins
,
B. A.
,
Sessolo
,
M.
,
Stavrinidou
,
E.
,
Strakosas
,
X.
,
Tassone
,
C.
,
Delongchamp
,
D. M.
, and
Malliaras
,
G. G.
,
2016
, “
Structural Control of Mixed Ionic and Electronic Transport in Conducting Polymers
,”
Nat. Commun.
,
7
(
1
), p.
11287
.10.1038/ncomms11287
198.
Tan
,
S. T. M.
,
Giovannitti
,
A.
,
Marks
,
A.
,
Moser
,
M.
,
Quill
,
T. J.
,
McCulloch
,
I.
,
Salleo
,
A.
, and
Bonacchini
,
G. E.
,
2022
, “
Conjugated Polymers for Microwave Applications: Untethered Sensing Platforms and Multifunctional Devices
,”
Adv. Mater.
,
34
(
33
), p.
2202994
.10.1002/adma.202202994
199.
Zhao
,
H.
,
Xu
,
J.
,
Yuan
,
H.
,
Zhang
,
E.
,
Dai
,
N.
,
Gao
,
Z.
,
Huang
,
Y.
,
Lv
,
F.
,
Liu
,
L.
,
Gu
,
Q.
, and
Wang
,
S.
,
2022
, “
3D Printing of Artificial Skin Patches With Bioactive and Optically Active Polymer Materials for Anti-Infection and Augmenting Wound Repair
,”
Mater. Horiz.
,
9
(
1
), pp.
342
349
.10.1039/D1MH00508A
200.
Park
,
K. S.
,
Kwok
,
J. J.
,
Kafle
,
P.
, and
Diao
,
Y.
,
2021
, “
When Assembly Meets Processing: Tuning Multiscale Morphology of Printed Conjugated Polymers for Controlled Charge Transport
,”
Chem. Mater.
,
33
(
2
), pp.
469
498
.10.1021/acs.chemmater.0c04152
201.
Matsui
,
T.
,
Inose
,
Y.
,
Powell
,
D. A.
, and
Shadrivov
,
I. V.
,
2016
, “
Electroactive Tuning of Double-Layered Metamaterials Based on π-Conjugated Polymer Actuators
,”
Adv. Opt. Mater.
,
4
(
1
), pp.
135
140
.10.1002/adom.201500276
202.
Sun
,
R.
,
Park
,
K. S.
,
Comstock
,
A. H.
,
McConnell
,
A.
,
Chen
,
Y.-C.
,
Zhang
,
P.
,
Beratan
,
D.
, et al.,
2024
, “
Inverse Chirality-Induced Spin Selectivity Effect in Chiral Assemblies of π-Conjugated Polymers
,”
Nat. Mater.
,
23
(
6
), pp.
782
789
.10.1038/s41563-024-01838-8
You do not currently have access to this content.