Due to the restriction of lead-rich solder and the miniaturization of electronic packaging devices, lead-free solders have replaced lead-rich solders in the past decades; however, it also brings new technical problems. Reliability, fatigue, and drop resistance are of concern in the electronic industry. The paper provides a comprehensive survey of recent research on the methodologies to describe the mechanical behavior of lead-free solders. In order to understand the fundamental mechanical behavior of lead-free solders, the visco-plastic characteristics should be considered in the constitutive modeling. Under mechanical and thermal cycling, fatigue is related to the time to failure and can be predicted based on the analysis to strain, hysteresis energy, and damage accumulation. For electronic devices with potential drop impacts, drop resistance plays an essential role to assess the mechanical reliability of solder joints through experimental studies, establishing the rate-dependent material properties and proposing advanced numerical techniques to model the interconnect failure. The failure mechanisms of solder joints are complicated under coupled electrical-thermal-mechanical loadings, the increased current density can lead to electromigration around the current crowding zone. The induced void initiation and propagation have been investigated based on theoretical approaches to reveal the effects on the mechanical properties of solder joints. To elucidate the dominant mechanisms, the effects of current stressing and elevated temperature on mechanical behavior of lead-free solder have been reviewed. Potential directions for future research have been discussed.

References

1.
Osterman
,
M.
,
2006
, “
Being ‘RoHS Exempt’ in a Pb-Free World
,”
Capital SMTA Chapter Pb-Free Tutorial Program
, College Park, MD, May 9.https://www.calce.umd.edu/lead-free/SMTAExemptMay8.pdf
2.
EU Directive
,
2010
, “
Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment
,” European Union, Brussels, Belgium, Report No.
A7-0196/2010
.http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+TA+P7-TA-2010-0431+0+DOC+XML+V0//EN
3.
Zhang
,
L.
,
He
,
C. W.
,
Guo
,
Y. H.
,
Han
,
J. G.
,
Zhang
,
Y. W.
, and
Wang
,
X. Y.
,
2012
, “
Development of SnAg-Based Lead Free Solders in Electronics Packaging
,”
Microelectron. Reliab.
,
52
(
3
), pp.
559
578
.
4.
Kotadia
,
H. R.
,
Howes
,
P. D.
, and
Mannan
,
S. H.
,
2014
, “
A Review: On the Development of Low Melting Temperature Pb-Free Solders
,”
Microelectron. Reliab.
,
54
(
6–7
), pp.
1253
1273
.
5.
Choudhury
,
S. F.
, and
Ladani
,
L.
,
2015
, “
Effect of Intermetallic Compounds on the Thermomechanical Fatigue Life of Three-Dimensional Integrated Circuit Package Microsolder Bumps: Finite Element Analysis and Study
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
041003
.
6.
Zhou
,
B.
,
Zhou
,
Q.
, and
Yun
,
F. E.
,
2012
, “
Study on Interfacial Behavior and Shear Strength of Lead-Free Micro-Interconnect Bump After SnPb Reballing
,”
International Conference on Electronic Packaging Technology and High Density Packaging
(
ICEPT-HDP
), Guilin, China, Aug. 13–16, pp.
1317
1319
.
7.
Choudhury
,
S. F.
, and
Ladani
,
L.
,
2016
, “
Miniaturization of Micro-Solder Bumps and Effect of IMC, on Stress Distribution
,”
J. Electron. Mater.
,
45
(
7
), pp.
3683
3694
.
8.
Mu
,
D. K.
,
Mcdonald
,
S. D.
,
Read
,
J.
,
Huang
,
H.
, and
Nogita
,
K.
,
2016
, “
Critical Properties of Cu6Sn5 in Electronic Devices: Recent Progress and a Review
,”
Curr. Opin. Solid State Mater. Sci.
,
20
(
19
), pp.
55
76
.
9.
Cuddalorepatta
,
G.
, and
Dasgupta
,
A.
,
2010
, “
Multi-Scale Modeling of the Viscoplastic Response of As-Fabricated Microscale Pb-Free Sn3.0Ag0.5Cu Solder Interconnects
,”
Acta Mater.
,
58
(
18
), pp.
5989
6001
.
10.
Maleki
,
M.
,
Cugnoni
,
J.
, and
Botsis
,
J.
,
2016
, “
Multi-Scale Modeling of Elasto-Plastic Response of SnAgCu Lead-Free Solder Alloys at Different Ageing Conditions: Effect of Microstructure Evolution, Particle Size Effects and Interfacial Failure
,”
Mater. Sci. Eng. A
,
661
, pp.
132
144
.
11.
Mukherjee
,
S.
,
Zhou
,
B.
,
Dasgupta
,
A.
, and
Bieler
,
T. R.
,
2016
, “
Multiscale Modeling of the Anisotropic Transient Creep Response of Heterogeneous Single Crystal SnAgCu Solder
,”
Int. J. Plast.
,
78
, pp.
1
25
.
12.
Austin
,
R. A.
, and
McDowell
,
D. L.
,
2011
, “
A Dislocation-Based Constitutive Model for Viscoplastic Deformation of FCC Metals at Very High Strain Rates
,”
Int. J. Plast.
,
27
(
1
), pp.
1
24
.
13.
McDowell
,
D. L.
,
2008
, “
Viscoplasticity of Heterogeneous Metallic Materials
,”
Mater. Sci. Eng. R-Rep.
,
62
(
3
), pp.
67
123
.
14.
He
,
X.
, and
Yao
,
Y.
,
2017
, “
A Dislocation Density Based Viscoplastic Constitutive Model for Lead Free Solder Under Drop Impact
,”
Int. J. Solids Struct.
,
120
, pp.
236
244
.
15.
Dorn
,
J. E.
,
1955
, “
Some Fundamental Experiments on High Temperature Creep
,”
J. Mech. Phys. Solids
,
3
(
2
), pp.
85
116
.
16.
Garofalo
,
F.
,
1963
, “
An Empirical Relation Defining Stress Dependence of Minimum Creep Rate in Metals
,”
Trans. Metall. Soc. AIME
,
227
(
2
), pp. 351–365.
17.
Amagai
,
M.
,
1999
, “
Characterization of Chip Scale Packaging Materials
,”
Microelectron. Reliab.
,
39
(
9
), pp.
1365
1377
.
18.
Chen
,
Z. G.
,
Shi
,
Y. W.
, and
Xia
,
Z. D.
,
2004
, “
Constitutive Relations on Creep for SnAgCuRE Lead-Free Solder Joints
,”
J. Electron. Mater.
,
33
(
9
), pp.
964
971
.
19.
Song
,
H. G.
,
Morris
,
J. W.
, and
Hua
,
F.
,
2002
, “
The Creep Properties of Lead-Free Solder Joints
,”
JOM
,
54
(
6
), pp.
30
32
.
20.
Jud
,
P. P.
,
Grossmann
,
G.
,
Sennhauser
,
U.
, and
Uggowitzer
,
P. J.
,
2005
, “
Local Creep in SnAg3.8Cu0.7 Lead-Free Solder
,”
J. Electron. Mater.
,
34
(
9
), pp.
1206
1214
.
21.
Han
,
Y. D.
,
Jing
,
H. Y.
,
Nai
,
S. M. L.
,
Tan
,
C. M.
,
Wei
,
J.
,
Xu
,
L. Y.
, and
Zhang
,
S. R.
,
2009
, “
A Modified Constitutive Model for Creep of Sn–3.5Ag–0.7Cu Solder Joints
,”
J. Phys. D-Appl. Phys.
,
42
(
12
), p.
125411
.
22.
Gong
,
J.
,
Liu
,
C.
,
Conway
,
P. P.
, and
Silberschmidt
,
V. V.
,
2006
, “
Modelling of Ag3Sn Coarsening and Its Effect on Creep of Sn–Ag Eutectics
,”
Mater. Sci. Eng. A
,
427
(
1–2
), pp.
60
68
.
23.
Darveaux
,
R.
, and
Banerji
,
K.
,
1992
, “
Constitutive Relations for Tin-Based Solder Joints
,”
IEEE Trans. Compon. Hybrids Manuf. Technol.
,
15
(
6
), pp.
1013
1024
.
24.
Lau
,
J. H.
, and
Lee
,
S. W. R.
,
2002
, “
Modeling and Analysis of 96.SSn–3.SAg Lead-Free Solder Joints of Wafer Level Chip Scale Package on Buildup Microvia Printed Circuit Board
,”
IEEE Trans. Electron. Packag. Manuf.
,
25
(
1
), pp.
51
58
.
25.
Lee
,
Y.
, and
Basaran
,
C.
,
2011
, “
A Creep Model for Solder Alloys
,”
ASME J. Electron. Packag.
,
133
(
4
), p.
044501
.
26.
Anand
,
L.
,
1982
, “
Constitutive-Equations for the Rate-Dependent Deformation of Metals at Elevated Temperatures
,”
ASME J. Eng. Mater. Technol.
,
104
(
1
), pp.
12
17
.
27.
Burke
,
C.
, and
Punch
,
J.
,
2014
, “
A Comparison of the Creep Behavior of Joint-Scale SAC105 and SAC305 Solder Alloys
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
4
(
3
), pp.
516
527
.
28.
Chen
,
X.
,
Chen
,
G.
, and
Sakane
,
M.
,
2005
, “
Prediction of Stress-Strain Relationship With an Improved Anand Constitutive Model for Lead-Free Solder Sn–3.5Ag
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
1
), pp.
111
116
.
29.
Bai
,
N.
,
Chen
,
X.
, and
Gao
,
H.
,
2009
, “
Simulation of Uniaxial Tensile Properties for Lead-Free Solders With Modified Anand Model
,”
Mater. Des.
,
30
(
1
), pp.
122
128
.
30.
Pei
,
M.
, and
Qu
,
J.
,
2008
, “
Creep and Fatigue Behavior of SnAg Solders With Lanthanum Doping
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
3
), pp.
712
718
.
31.
Qin
,
F.
,
An
,
T.
, and
Chen
,
N.
,
2010
, “
Strain Rate Effects and Rate-Dependent Constitutive Models of Lead-Based and Lead-Free Solders
,”
ASME J. Appl. Mech.
,
77
(
1
), p.
011008
.
32.
McDowell
,
D. L.
,
Miller
,
M. P.
, and
Brooks
,
D. C.
,
1994
, “
Unified Creep-Plasticity Theory for Solder Alloys. Fatigue of Electronic Materials
,” ASTM, West Conshohocken, PA, Standard No. 1153.
33.
Fu
,
C. Y.
,
McDowell
,
D. L.
, and
Ume
,
I. C.
,
1998
, “
A Finite Element Procedure of a Cyclic Thermoviscoplasticity Model for Solder and Copper Interconnects
,”
ASME J. Electron. Packag.
,
120
(
1
), pp.
24
34
.
34.
Wang
,
F.
,
Keer
,
L. M.
,
Vaynman
,
S.
, and
Wen
,
S.
,
2004
, “
Constitutive Model and Numerical Analysis for High Lead Solders
,”
IEEE Trans. Compon. Packag. Technol.
,
27
(
4
), pp.
718
723
.
35.
Fu
,
C. Y.
,
McDowell
,
D. L.
, and
Ume
,
I. C.
,
2002
, “
Thermoplastic Finite Element Analysis of Unfilled Plated-Through Holes During Wave Soldering
,”
ASME J. Electron. Packag.
,
124
(
1
), pp.
45
53
.
36.
McDowell
,
D. L.
,
1992
, “
A Nonlinear Kinematic Hardening Theory for Cyclic Thermoplasticity and Thermoviscoplasticity
,”
Int. J. Plast.
,
8
(
6
), pp.
695
728
.
37.
Bai
,
N.
, and
Chen
,
X.
,
2009
, “
A New Unified Constitutive Model With Short- and Long-Range Back Stress for Lead-Free Solders of Sn–3Ag–0.5Cu and Sn–0.7Cu
,”
Int. J. Plast.
,
25
(
11
), pp.
2181
2203
.
38.
Wen
,
S. M.
,
Keer
,
L. M.
, and
Mavoori
,
H.
,
2001
, “
Constitutive and Damage Model for a Lead-Free Solder
,”
J. Electron. Mater.
,
30
(
9
), pp.
1190
1196
.
39.
Yao
,
Y.
,
He
,
X.
,
Keer
,
L. M.
, and
Fine
,
M. E.
,
2015
, “
A Continuum Damage Mechanics-Based Unified Creep and Plasticity Model for Solder Materials
,”
Acta Mater.
,
83
, pp.
160
168
.
40.
Yao
,
Y.
,
An
,
R.
, and
Long
,
X.
,
2017
, “
Effect of Electric Current on Mechanical Behaviour of Sn–Ag–Cu Solder Joints
,”
Eng. Fract. Mech.
,
171
, pp.
85
97
.
41.
Yao
,
Y.
,
Fine
,
M. E.
, and
Keer
,
L. M.
,
2007
, “
An Energy Approach to Predict Fatigue Crack Propagation in Metals and Alloys
,”
Int. J. Fract.
,
146
(
3
), pp.
149
158
.
42.
Yao
,
Y.
,
Fiedler
,
B. A.
,
Keer
,
L. M.
, and
Fine
,
M. E.
,
2009
, “
Fatigue Crack Propagation Behavior of Sn–Ag–Cu Solder Interconnects
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
2
), pp.
317
324
.
43.
He
,
X.
,
Yao
,
Y.
, and
Keer
,
L. M.
,
2017
, “
A Rate and Temperature Dependent Unified Creep-Plasticity Model for High Strength Steel and Solder Alloys
,”
Mech. Mater.
,
106
, pp.
35
43
.
44.
Yao
,
Y.
, and
Keer
,
L. M.
,
2013
, “
Cohesive Fracture Mechanics Based Numerical Analysis to BGA Packaging and Lead Free Solders Under Drop Impact
,”
Microelectron. Reliab.
,
53
(
4
), pp.
629
637
.
45.
Desai
,
C. S.
,
2015
, “
Constitutive Modeling of Materials and Contacts Using the Disturbed State Concept—Part 2: Validations at Specimen and Boundary Value Problem Levels
,”
Comput. Struct.
,
146
, pp.
234
251
.
46.
Bonnaud
,
E. L.
,
2011
, “
Issues on Viscoplastic Characterization of Lead-Free Solder for Drop Test Simulations
,”
ASME J. Electron. Packag.
,
133
(
4
), p.
041013
.
47.
Ohguchi
,
K.
,
Sasaki
,
K.
,
Ishibashi
,
M.
, and
Hoshino
,
T.
,
2004
, “
Plasticity-Creep Separation Method for Viscoplastic Deformation of Lead-Free Solders
,”
JSME Int. J., Ser. A
,
47
(
3
), pp.
371
379
.
48.
Ohguchi
,
K. I.
,
Sasaki
,
K.
, and
Ishibashi
,
M.
,
2006
, “
A Quantitative Evaluation of Time-Independent and Time-Dependent Deformations of Lead-Free and Lead-Containing Solder Alloys
,”
J. Electron. Mater.
,
35
(
1
), pp.
132
139
.
49.
Manson
,
S. S.
,
1966
,
Thermal Stress and Low Cycle Fatigue
,
McGraw-Hill
,
New York
.
50.
Lee
,
W. W.
,
Nguyen
,
L. T.
, and
Selvaduray
,
G. S.
,
2000
, “
Solder Joint Fatigue Models: Review and Applicability to Chip Scale Packages
,”
Microelectron. Reliab.
,
40
(
2
), pp.
231
244
.
51.
Kanchanomai
,
C.
, and
Mutoh
,
Y.
,
2004
, “
Effect of Temperature on Isothermal Low Cycle Fatigue Properties of Sn–Ag Eutectic Solder
,”
Mater. Sci. Eng. A
,
381
(
1–2
), pp.
113
120
.
52.
Andersson
,
C.
, and
Liu
,
J.
,
2008
, “
Effect of Corrosion on the Low Cycle Fatigue Behavior of Sn–4.0Ag–0.5Cu Lead-Free Solder Joints
,”
Int. J. Fatigue
,
30
(
5
), pp.
917
930
.
53.
Tohmyoh
,
H.
,
Ishikawa
,
S.
,
Watanabe
,
S.
,
Kuroha
,
M.
, and
Nakano
,
Y.
,
2013
, “
Estimation and Visualization of the Fatigue Life of Pb-Free SAC Solder Bump Joints Under Thermal Cycling
,”
Microelectron. Reliab.
,
53
(
2
), pp.
314
320
.
54.
Kim
,
C.-U.
,
Bang
,
W.-H.
,
Xu
,
H.
, and
Lee
,
T.-K.
,
2013
, “
Characterization of Solder Joint Reliability Using Cyclic Mechanical Fatigue Testing
,”
JOM
,
65
(
10
), pp.
1362
1373
.
55.
Kanchanomai
,
C.
,
Miyashita
,
Y.
,
Mutoh
,
Y.
, and
Mannan
,
S. L.
,
2002
, “
Low Cycle Fatigue and Fatigue Crack Growth Behaviour of Sn–Ag Eutectic Solder
,”
Soldering Surf. Mount Technol.
,
14
(
3
), pp.
30
36
.
56.
Chiou
,
Y. C.
,
Jen
,
Y. M.
, and
Huang
,
S. H.
,
2011
, “
Finite Element Based Fatigue Life Estimation of the Solder Joints With Effect of Intermetallic Compound Growth
,”
Microelectron. Reliab.
,
51
(
12
), pp.
2319
2329
.
57.
Kanda
,
Y.
, and
Kariya
,
Y.
,
2010
, “
Influence of Asymmetrical Waveform on Low-Cycle Fatigue Life of Micro Solder Joint
,”
J. Electron. Mater.
,
39
(
2
), pp.
238
245
.
58.
Kanda
,
Y.
,
Kariya
,
Y.
, and
Mochizuki
,
Y.
,
2008
, “
Effect of Hold Time on Low Cycle Fatigue Life of Micro Solder Joint
,”
Mater. Trans.
,
49
(
7
), pp.
1524
1530
.
59.
McDowell
,
D. L.
,
Gall
,
K.
, and
Horstemeyer
,
M. F.
,
2003
, “
Microstructure-Based Fatigue Modeling of Cast A356-T6 Alloy
,”
Eng. Fract. Mech.
,
70
(
1
), pp.
49
80
.
60.
Zhang
,
Q. K.
,
Zou
,
H. F.
, and
Zhang
,
Z. F.
,
2009
, “
Tensile and Fatigue Behaviors of Aged Cu/Sn–4Ag Solder Joints
,”
J. Electron. Mater.
,
38
(
6
), pp.
852
859
.
61.
Morrow
,
J. D.
,
1965
, “
Cyclic Plastic Strain Energy and Fatigue of Metals
,”
Symposium on Internal Friction Damping in Cyclic Plasticity
, Chicago, IL, June 22, pp.
45
87
.
62.
Li
,
X.
, and
Wang
,
Z.
,
2007
, “
Thermo-Fatigue Life Evaluation of SnAgCu Solder Joints in Flip Chip Assemblies
,”
J. Mater. Process. Technol.
,
183
(
1
), pp.
6
12
.
63.
Amalu
,
E. H.
, and
Ekere
,
N. N.
,
2012
, “
High-Temperature Fatigue Life of Flip Chip Lead-Free Solder Joints at Varying Component Stand-Off Height
,”
Microelectron. Reliab.
,
52
(
12
), pp.
2982
2994
.
64.
Che
,
F. X.
, and
Pang
,
J. H. L.
,
2012
, “
Characterization of IMC Layer and Its Effect on Thermomechanical Fatigue Life of Sn–3.8Ag–0.7Cu Solder Joints
,”
J. Alloys Compd.
,
541
, pp.
6
13
.
65.
Zhu
,
Y.
,
Li
,
X.
,
Gao
,
R.
, and
Wang
,
C.
,
2014
, “
Low-Cycle Fatigue Failure Behavior and Life Evaluation of Lead-Free Solder Joint Under High Temperature
,”
Microelectron. Reliab.
,
54
(
12
), pp.
2922
2928
.
66.
Lee
,
J. H.
, and
Jeong
,
H. Y.
,
2014
, “
Fatigue Life Prediction of Solder Joints With Consideration of Frequency, Temperature and Cracking Energy Density
,”
Int. J. Fatigue
,
61
, pp.
264
270
.
67.
Dauksher
,
W.
, and
Lau
,
J.
,
2009
, “
A Finite-Element-Based Solder-Joint Fatigue-Life Prediction Methodology for Sn–Ag–Cu Ball-Grid-Array Packages
,”
IEEE Trans. Device Mater. Reliab.
,
9
(
2
), pp.
231
236
.
68.
Zhu
,
Y.
,
Li
,
X.
,
Wang
,
C.
, and
Gao
,
R.
,
2015
, “
A New Creep-Fatigue Life Model of Lead-Free Solder Joint
,”
Microelectron. Reliab.
,
55
(
7
), pp.
1097
1100
.
69.
Qin
,
H. B.
,
Li
,
W. Y.
,
Zhou
,
M. B.
, and
Zhang
,
X. P.
,
2014
, “
Low Cycle Fatigue Performance of Ball Grid Array Structure Cu/Sn–3.0Ag–0.5Cu/Cu Solder Joints
,”
Microelectron. Reliab.
,
54
(
12
), pp.
2911
2921
.
70.
Yang
,
Q. D.
,
Shim
,
D. J.
, and
Spearing
,
S. M.
,
2004
, “
A Cohesive Zone Model for Low Cycle Fatigue Life Prediction of Solder Joints
,”
Microelectron. Eng.
,
75
(
1
), pp.
85
95
.
71.
Erinc
,
M.
,
Assman
,
T. M.
,
Schreurs
,
P. J. G.
, and
Geers
,
M. G. D.
,
2008
, “
Fatigue Fracture of SnAgCu Solder Joints by Microstructural Modeling
,”
Int. J. Fract.
,
152
(
1
), pp.
37
49
.
72.
Erinc
,
M.
,
Schreurs
,
P. J. G.
, and
Geers
,
M. G. D.
,
2007
, “
Integrated Numerical-Experimental Analysis of Interfacial Fatigue Fracture in SnAgCu Solder Joints
,”
Int. J. Solids Struct.
,
44
(
17
), pp.
5680
5694
.
73.
Erinc
,
M.
,
Schreurs
,
P. J. G.
, and
Geers
,
M. G. D.
,
2008
, “
Intergranular Thermal Fatigue Damage Evolution in SnAgCu Lead-Free Solder
,”
Mech. Mater.
,
40
(
10
), pp.
780
791
.
74.
Sun
,
Z.
,
Benabou
,
L.
, and
Dahoo
,
P. R.
,
2013
, “
Prediction of Thermo-Mechanical Fatigue for Solder Joints in Power Electronics Modules Under Passive Temperature Cycling
,”
Eng. Fract. Mech.
,
107
, pp.
48
60
.
75.
Benabou
,
L.
,
Sun
,
Z.
, and
Dahoo
,
P. R.
,
2013
, “
A Thermo-Mechanical Cohesive Zone Model for Solder Joint Lifetime Prediction
,”
Int. J. Fatigue
,
49
, pp.
18
30
.
76.
Shaffiar
,
N. M.
,
Yamin
,
A. F. M.
,
Loh
,
W. K.
, and
Tamin
,
M. N.
,
2012
, “
Fatigue Failure Processes in Pb-Free Solder Joints Using Continuum Damage and Cohesive Zone Models
,”
IEEE 14th Electronics Packaging Technology Conference
(
EPTC
), Singapore, Dec. 5–7, pp.
456
461
.
77.
Abdul-Baqi
,
A.
,
Schreurs
,
P. J. G.
, and
Geers
,
M. G. D.
,
2005
, “
Fatigue Damage Modeling in Solder Interconnects Using a Cohesive Zone Approach
,”
Int. J. Solids Struct.
,
42
(
3–4
), pp.
927
942
.
78.
Basaran
,
C.
, and
Yan
,
C. Y.
,
1998
, “
A Thermodynamic Framework for Damage Mechanics of Solder Joints
,”
ASME J. Electron. Packag.
,
120
(
4
), pp.
379
384
.
79.
Basaran
,
C.
, and
Tang
,
H.
,
2002
, “
Implementation of a Thermodynamic Framework for Damage Mechanics of Solder Interconnects in Microelectronic Packaging
,”
Int. J. Damage Mech.
,
11
(
1
), pp.
87
108
.
80.
Basaran
,
C.
,
Lin
,
M.
, and
Ye
,
H.
,
2003
, “
A Thermodynamic Model for Electrical Current Induced Damage
,”
Int. J. Solids Struct.
,
40
(
26
), pp.
7315
7327
.
81.
Tang
,
H.
, and
Basaran
,
C.
,
2003
, “
A Damage Mechanics-Based Fatigue Life Prediction Model for Solder Joints
,”
ASME J. Electron. Packag.
,
125
(
1
), pp.
120
125
.
82.
Sosnovskiy
,
L.
, and
Sherbakov
,
S.
,
2016
, “
Mechanothermodynamic Entropy and Analysis of Damage State of Complex Systems
,”
Entropy
,
18
(
7
), p.
268
.
83.
Yao
,
Y.
,
Vaynman
,
S.
,
Keer
,
L. M.
, and
Fine
,
M. E.
,
2008
, “
Energy-Based Micromechanics Analysis on Fatigue Crack Propagation Behavior in Sn–Ag Eutectic Solder
,”
J. Electron. Mater.
,
37
(
3
), pp.
339
346
.
84.
Yao
,
Y.
,
Wang
,
J. D.
, and
Keer
,
L. M.
,
2017
, “
A Phase Transformation Based Method to Predict Fatigue Crack Nucleation and Propagation in Metals and Alloys
,”
Acta Mater.
,
127
, pp.
244
251
.
85.
Pineau
,
A.
,
McDowell
,
D. L.
,
Busso
,
E. P.
, and
Antolovich
,
S. D.
,
2016
, “
Failure of Metals II: Fatigue
,”
Acta Mater.
,
107
, pp.
484
507
.
86.
Musinski
,
W. D.
, and
McDowell
,
D. L.
,
2016
, “
Simulating the Effect of Grain Boundaries on Microstructurally Small Fatigue Crack Growth From a Focused Ion Beam Notch Through a Three-Dimensional Array of Grains
,”
Acta Mater.
,
112
, pp.
20
39
.
87.
Castelluccio
,
G. M.
,
Musinski
,
W. D.
, and
McDowell
,
D. L.
,
2016
, “
Computational Micromechanics of Fatigue of Microstructures in the HCF–VHCF Regimes
,”
Int. J. Fatigue
,
93
(
Pt. 2
), pp.
387
396
.
88.
Lall
,
P.
,
Shantaram
,
S.
,
Suhling
,
J.
, and
Locker
,
D.
,
2015
, “
Stress-Strain Behavior of SAC305 at High Strain Rates
,”
ASME J. Electron. Packag.
,
137
(
1
), p.
011010
.
89.
Niu
,
X.
,
Li
,
N.
, and
Shu
,
X.
,
2014
, “
Effect of Temperature and Strain Rate on Dynamic Mechanical Properties of Low Silver Lead-Free Solder
,”
Rare Met. Mater. Eng.
,
43
(
9
), pp.
2167
2171
.
90.
Niu
,
X. Y.
,
Li
,
W.
,
Wang
,
G. X.
, and
Shu
,
X. F.
,
2015
, “
Effects of Temperature and Strain Rate on Mechanical Behavior of Low-Silver Lead-Free Solder Under Drop Impact
,”
J. Mater. Sci.: Mater. Electron.
,
26
(
1
), pp.
601
607
.
91.
Lall
,
P.
,
Zhang
,
D.
,
Yadav
,
V.
, and
Locker
,
D.
,
2016
, “
High Strain Rate Constitutive Behavior of SAC105 and SAC305 Lead-Free Solder During Operation at High Temperature
,”
Microelectron. Reliab.
,
62
, pp.
4
17
.
92.
Nourani
,
A.
, and
Spelt
,
J. K.
,
2015
, “
Combined Effect of Strain-Rate and Mode-Ratio on the Fracture of Lead-Free Solder Joints
,”
Mater. Des.
,
85
, pp.
115
126
.
93.
Yau
,
Y. H.
, and
Hua
,
S. N.
,
2011
, “
A Comprehensive Review of Drop Impact Modeling on Portable Electronic Devices
,”
ASME Appl. Mech. Rev.
,
64
(
2
), p.
020803
.
94.
Yu
,
D.
,
Kwak
,
J.
,
Park
,
S.
,
Chung
,
S.
, and
Yoon
,
J.-Y.
,
2012
, “
Effect of Shield-Can on Dynamic Response of Board-Level Assembly
,”
ASME J. Electron. Packag.
,
134
(
3
), p.
031010
.
95.
Yang
,
F.
, and
Meguid
,
S. A.
,
2013
, “
Efficient Multi-Level Modeling Technique for Determining Effective Board Drop Reliability of PCB Assembly
,”
Microelectron. Reliab.
,
53
(
7
), pp.
975
984
.
96.
Kok
,
C. K.
,
Ng
,
W. J.
,
Ooi
,
C. C.
, and
Liew
,
K. W.
,
2016
, “
Ball-Grid-Array Solder Joint Model for Assembly-Level Impact Reliability Prediction
,”
Microelectron. Reliab.
,
65
, pp.
184
191
.
97.
Cheng
,
H. C.
,
Cheng
,
T. H.
,
Chen
,
W. H.
,
Chang
,
T. C.
, and
Huang
,
H. Y.
,
2016
, “
Board-Level Drop Impact Reliability of Silicon Interposer-Based 2.5-D IC Integration
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
6
(
10
), pp.
1493
1504
.
98.
Karppinen
,
J.
,
Li
,
J.
,
Pakarinen
,
J.
,
Mattila
,
T. T.
, and
Paulasto-Krockel
,
M.
,
2012
, “
Shock Impact Reliability Characterization of a Handheld Product in Accelerated Tests and Use Environment
,”
Microelectron. Reliab.
,
52
(
1
), pp.
190
198
.
99.
Wong
,
E. H.
, and
Mai
,
Y. W.
,
2006
, “
New Insights Into Board Level Drop Impact
,”
Microelectron. Reliab.
,
46
(
5–6
), pp.
930
938
.
100.
Kang
,
T. M.
,
Lee
,
D. W.
,
Hwang
,
Y. K.
,
Chung
,
Q. H.
,
Yoo
,
B. K.
,
Kang
,
T. M.
,
Lee
,
D. W.
,
Hwang
,
Y. K.
,
Chung
,
Q. H.
, and
Yoo
,
B. K.
,
2011
, “
A Study on the Correlation Between Board Level Drop Test Experiment and Simulation
,”
J. Microelectron. Packag. Soc.
,
18
(
2
), pp.
35
41
.http://ocean.kisti.re.kr/downfile/volume/ishm/MOKRBW/2011/v18n2/MOKRBW_2011_v18n2_35.pdf
101.
Agwai
,
A.
,
Guven
,
I.
, and
Madenci
,
E.
,
2012
, “
Drop-Shock Failure Prediction in Electronic Packages by Using Peridynamic Theory
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
2
(
3
), pp.
439
447
.
102.
Ho
,
P. S.
, and
Kwok
,
T.
,
1989
, “
Electromigration in Metals
,”
Rep. Prog. Phys.
,
52
(
3
), pp.
301
348
.
103.
Lee
,
T. Y.
,
Tu
,
K. N.
,
Kuo
,
S. M.
, and
Frear
,
D. R.
,
2001
, “
Electromigration of Eutectic SnPb Solder Interconnects for Flip Chip Technology
,”
J. Appl. Phys.
,
89
(
6
), pp.
3189
3194
.
104.
Tu
,
K. N.
,
2003
, “
Recent Advances on Electromigration in Very-Large-Scale-Integration of Interconnects
,”
J. Appl. Phys.
,
94
(
9
), pp.
5451
5473
.
105.
Hu
,
C. K.
,
Gignac
,
L.
,
Rosenberg
,
R.
,
Liniger
,
E.
,
Rubino
,
J.
,
Sambucetti
,
C.
,
Domenicucci
,
A.
,
Chen
,
X.
, and
Stamper
,
A. K.
,
2002
, “
Reduced Electromigration of Cu Wires by Surface Coating
,”
Appl. Phys. Lett.
,
81
(
10
), pp.
1782
1784
.
106.
Hu
,
C. K.
,
Rosenberg
,
R.
, and
Lee
,
K. Y.
,
1999
, “
Electromigration Path in Cu Thin-Film Lines
,”
Appl. Phys. Lett.
,
74
(
20
), pp.
2945
2947
.
107.
Chao
,
B.
,
Chae
,
S. H.
,
Zhang
,
X.
,
Lu
,
K. H.
,
Ding
,
M.
,
Im
,
J.
, and
Ho
,
P. S.
,
2006
, “
Electromigration Enhanced Intermetallic Growth and Void Formation in Pb-Free Solder Joints
,”
J. Appl. Phys.
,
100
(
8
), p.
084909
.
108.
Tu
,
K. N.
,
Yeh
,
C. C.
,
Liu
,
C. Y.
, and
Chen
,
C.
,
2000
, “
Effect of Current Crowding on Vacancy Diffusion and Void Formation in Electromigration
,”
Appl. Phys. Lett.
,
76
(
8
), pp.
988
990
.
109.
Yao
,
Y.
,
Keer
,
L. M.
, and
Fine
,
M. E.
,
2010
, “
Modeling the Failure of Intermetallic/Solder Interfaces
,”
Intermetallics
,
18
(
8
), pp.
1603
1611
.
110.
Chen
,
C.
,
Tong
,
H. M.
, and
Tu
,
K. N.
,
2010
, “
Electromigration and Thermomigration in Pb-Free Flip-Chip Solder Joints
,”
Annu. Rev. Mater. Res.
,
40
(
40
), pp.
531
555
.
111.
Ye
,
H.
,
Basaran
,
C.
, and
Hopkins
,
D.
,
2003
, “
Thermomigration in Pb-Sn Solder Joints Under Joule Heating During Electric Current Stressing
,”
Appl. Phys. Lett.
,
82
(
7
), pp.
1045
1047
.
112.
Chang
,
Y. W.
,
Chiang
,
T. H.
, and
Chen
,
C.
,
2007
, “
Effect of Void Propagation on Bump Resistance Due to Electromigration in Flip-Chip Solder Joints Using Kelvin Structure
,”
Appl. Phys. Lett.
,
91
(
13
), p.
132113
.
113.
Chang
,
Y. W.
,
Liang
,
S. W.
, and
Chen
,
C.
,
2006
, “
Study of Void Formation Due to Electromigration in Flip-Chip Solder Joints Using Kelvin Bump Probes
,”
Appl. Phys. Lett.
,
89
(
3
), p.
032103
.
114.
Jen
,
M. H. R.
,
Liu
,
L. C.
, and
Lai
,
Y. S.
,
2009
, “
Electromigration on Void Formation of Sn3Ag1.5Cu FCBGA Solder Joints
,”
Microelectron. Reliab.
,
49
(
7
), pp.
734
745
.
115.
Wang
,
Y. X.
, and
Yao
,
Y.
,
2017
, “
A Physical Analysis to Current Exponent Variation Regularity and Electromigration Induced Failure
,”
J. Appl. Phys.
,
121
(
6
), p.
065701
.
116.
Kanchanomai
,
C.
,
Limtrakarn
,
W.
, and
Mutoh
,
Y.
,
2005
, “
Fatigue Crack Growth Behavior in Sn–Pb Eutectic Solder/Copper Joint Under Mode I Loading
,”
Mech. Mater.
,
37
(
11
), pp.
1166
1174
.
117.
Kuo
,
S. M.
, and
Lin
,
K. L.
,
2008
, “
Electromigration-Induced Void Formation at the Cu5Zn8/Solder Interface in a Cu/Sn–9Zn/Cu Sandwich
,”
J. Electron. Mater.
,
37
(
10
), pp.
1611
1617
.
118.
Miyazaki
,
T.
, and
Omata
,
T.
,
2006
, “
Electromigration Degradation Mechanism for Pb-Free Flip-Chip Micro Solder Bumps
,”
Microelectron. Reliab.
,
46
(
9–11
), pp.
1898
1903
.
119.
Gee
,
S.
,
Kelkar
,
N.
,
Huang
,
J.
, and
Tu
,
K. N.
,
2005
, “
Lead-Free and PbSn Bump Electromigration Testing
,”
ASME
Paper No. IPACK2005-73417.
120.
Liang
,
S. W.
,
Chang
,
Y. W.
, and
Chen
,
C.
,
2006
, “
Effect of Al-Trace Dimension on Joule Heating and Current Crowding in Flip-Chip Solder Joints Under Accelerated Electromigration
,”
Appl. Phys. Lett.
,
88
(
17
), p.
172108
.
121.
Yao
,
Y.
,
Keer
,
L. M.
, and
Fine
,
M. E.
,
2009
, “
Electromigration Effect on Pancake Type Void Propagation Near the Interface of Bulk Solder and Intermetallic Compound
,”
J. Appl. Phys.
,
105
(
6
), p.
063710
.
122.
Yao
,
Y.
,
Wang
,
Y. X.
,
Keer
,
L. M.
, and
Fine
,
M. E.
,
2015
, “
An Analytical Method to Predict Electromigration-Induced Finger-Shaped Void Growth in SnAgCu Solder Interconnect
,”
Scr. Mater.
,
95
(
1
), pp.
7
10
.
123.
Dalleau
,
D.
,
Weide-Zaage
,
K.
, and
Danto
,
Y.
,
2003
, “
Simulation of Time Depending Void Formation in Copper, Aluminum and Tungsten Plugged Via Structures
,”
Microelectron. Reliab.
,
43
(
9–11
), pp.
1821
1826
.
124.
Dalleau
,
D. D. D.
,
2003
, “
3-D Time-Depending Simulation of Void Formation in Metallization Structures
,”
Ph.D. dissertation
, University of Hannover, Hannover, Germany.http://d-nb.info/969247761/34
125.
Orii
,
Y.
,
Toriyama
,
K.
,
Kohara
,
S.
,
Noma
,
H.
,
Okamoto
,
K.
, and
Uenishi
,
K.
,
2012
, “
Effect of Preformed Cu-Sn IMC Layer on Electromigration Reliability of Solder Capped Cu Pillar Bump Interconnection on an Organic Substrate
,” Second
IEEE
CPMT Symposium Japan
, Kyoto, Japan, Dec. 10–12, pp.
1
4
.
126.
Orii
,
Y.
,
Toriyama
,
K.
,
Kohara
,
S.
,
Noma
,
H.
,
Okamoto
,
K.
, and
Uenishi
,
K.
,
2012
, “
Effect of Preformed IMC Layer on Electromigration of Solder Capped Cu Pillar Bump Interconnection on an Organic Substrate
,”
Int. Symp. Microelectron.
,
2012
(1), pp. 455–463.
127.
Gan
,
H.
, and
Tu
,
K. N.
,
2005
, “
Polarity Effect of Electromigration on Kinetics of Intermetallic Compound Formation in Pb-Free Solder V-Groove Samples
,”
J. Appl. Phys.
,
97
(
6
), p.
063514
.
128.
Ren
,
F.
,
Nah
,
J. W.
,
Tu
,
K. N.
,
Xiong
,
B.
,
Xu
,
L.
, and
Pang
,
J. H. L.
,
2006
, “
Electromigration Induced Ductile-to-Brittle Transition in Lead-Free Solder Joints
,”
Appl. Phys. Lett.
,
89
(
14
), p.
141914
.
129.
Lu
,
Y. D.
,
Wan
,
M.
,
En
,
Y. F.
,
Wang
,
X.
,
Cheng
,
J.
, and
He
,
X. Q.
,
2011
, “
Effect of Current Stress on Shear Strength and Fracture Mode of Al/SnAgCu/Cu Interconnecting Structure
,”
J. South China Univ. Technol.
,
39
(
11
), pp.
120
124
.
130.
Su
,
F.
,
Mao
,
R.
,
Wang
,
X.
,
Wang
,
G.
, and
Pan
,
H.
,
2011
, “
Creep Behaviour of Sn–3.8Ag–0.7Cu Under the Effect of Electromigration: Experiments and Modelling
,”
Microelectron. Reliab.
,
51
(
5
), pp.
1020
1024
.
131.
Glickman
,
E.
,
Osipov
,
N.
,
Ivanov
,
A.
, and
Nathan
,
M.
,
1998
, “
Diffusional Creep as a Stress Relaxation Mechanism in Electromigration
,”
J. Appl. Phys.
,
83
(
1
), pp.
100
107
.
132.
Kim
,
D.
, and
Lu
,
W.
,
2006
, “
Creep Flow, Diffusion, and Electromigration in Small Scale Interconnects
,”
J. Mech. Phys. Solids
,
54
(
12
), pp.
2554
2568
.
133.
Li
,
Z.
,
Dong
,
Y.
,
Li
,
S.
,
Xu
,
L.
, and
Sun
,
J.
,
2007
, “
Electromigration-Induced Coble Creep in Polycrystalline Materials
,”
Appl. Phys. Lett.
,
91
(
19
), p.
191902
.
134.
Long
,
X.
,
Wang
,
Y.
,
Keer
,
L. M.
, and
Yao
,
Y.
,
2016
, “
Mechanical Effects of Isolated Defects Within a Lead-Free Solder Bump Subjected to Coupled Thermal-Electrical Loading
,”
J. Micromech. Mol. Phys.
,
1
(
1
), p.
1650004
.
135.
Pharr
,
M.
,
Zhao
,
K.
,
Suo
,
Z.
,
Ouyang
,
F. Y.
, and
Liu
,
P.
,
2011
, “
Concurrent Electromigration and Creep in Lead-Free Solder
,”
J. Appl. Phys.
,
110
(
8
), p.
083716
.
136.
Wang
,
Y. X.
,
Yao
,
Y.
, and
Keer
,
L. M.
,
2017
, “
A Statistical Mechanics Model to Predict Electromigration Induced Damage and Void Growth in Solder Interconnects
,”
Phys. A
,
468
, pp.
195
204
.
137.
Basaran
,
C.
,
Li
,
S.
,
Hopkins
,
D. C.
, and
Veychard
,
D.
,
2009
, “
Electromigration Time to Failure of SnAgCuNi Solder Joints
,”
J. Appl. Phys.
,
106
(
1
), p.
013707
.
138.
Basaran
,
C.
, and
Lin
,
M.
,
2007
, “
Damage Mechanics of Electromigration in Microelectronics Copper Interconnects
,”
Int. J. Mater. Struct. Integr.
,
1
(
1–3
), pp.
16
39
.
139.
Basaran
,
C.
, and
Lin
,
M.
,
2007
, “
Electromigration Induced Strain Field Simulations for Nanoelectronics Lead-Free Solder Joints
,”
Int. J. Solids Struct.
,
44
(
14–15
), pp.
4909
4924
.
140.
Lin
,
M.
, and
Basaran
,
C.
,
2005
, “
Electromigration Induced Stress Analysis Using Fully Coupled Mechanical–Diffusion Equations With Nonlinear Material Properties
,”
Comput. Mater. Sci.
,
34
(
1
), pp.
82
98
.
141.
Chan
,
Y. C.
, and
Yang
,
D.
,
2010
, “
Failure Mechanisms of Solder Interconnects Under Current Stressing in Advanced Electronic Packages
,”
Prog. Mater. Sci.
,
55
(
5
), pp.
428
475
.
142.
Yeh
,
Y. T.
,
Chou
,
C. K.
,
Hsu
,
Y. C.
,
Chen
,
C.
, and
Tu
,
K. N.
,
2005
, “
Threshold Current Density of Electromigration in Eutectic SnPb Solder
,”
Appl. Phys. Lett.
,
86
(
20
), p.
203504
.
143.
Hsu
,
Y. C.
,
Chen
,
D. C.
,
Liu
,
P. C.
, and
Chen
,
C.
,
2005
, “
Measurement of Electromigration Parameters of Lead-Free SnAg3.5 Solder Using U-Groove Lines
,”
J. Mater. Res.
,
20
(
10
), pp.
2831
2837
.
144.
Huang
,
Y. T.
,
Hsu
,
H. H.
, and
Wu
,
A. T.
,
2014
, “
Electromigration-Induced Back Stress in Critical Solder Length for Three-Dimensional Integrated Circuits
,”
J. Appl. Phys.
,
115
(
3
), p.
034904
.
145.
Xuan
,
F. Z.
,
Shao
,
S. S.
, and
Chen
,
Q. Q.
,
2011
, “
Synthesis Creep Behavior of Sn63Pb37 Under the Applied Stress and Electric Current
,”
Microelectron. Reliab.
,
51
(
12
), pp.
2336
2340
.
146.
Chen
,
R.
, and
Yang
,
F.
,
2008
, “
Electrocontact Heating in a Sn60Pb40 Solder Alloy
,”
J. Phys. D-Appl. Phys.
,
41
(
6
), pp.
3142
3147
.https://doi.org/10.1088/0022-3727/41/6/065404
147.
Chen
,
R.
, and
Yang
,
F.
,
2008
, “
Impression Creep of a Sn60-Pb40 Alloy: The Effect of Electric Current
,”
J. Phys. D-Appl. Phys.
,
41
(
15
), pp.
1525
1528
.
148.
Zhao
,
G.
, and
Yang
,
F.
,
2014
, “
Effect of DC Current on Tensile Creep of Pure Tin
,”
Mater. Sci. Eng. A
,
591
(
2
), pp.
97
104
.
149.
Rusinko
,
A.
,
2016
, “
Modeling the Effect of DC on the Creep of Metals in Terms of the Synthetic Theory of Irrecoverable Deformation
,”
Mech. Mater.
,
93
, pp.
163
167
.
150.
Li
,
W. Y.
,
Jin
,
H.
,
Yue
,
W.
,
Tan
,
M. Y.
, and
Zhang
,
X. P.
,
2016
, “
Creep Behavior of Micro-Scale Cu/Sn–3.0Ag–0.5Cu/Cu Joints Under Electro-Thermo-Mechanical Coupled Loads
,”
J. Mater. Sci.: Mater. Electron.
,
27
(
12
), pp.
13022
13033
.
151.
Ha
,
S. S.
,
Sung
,
J. Y.
,
Yoon
,
J. W.
, and
Jung
,
S. B.
,
2011
, “
Influence of Current Density on Mechanical Reliability of Sn–3.5Ag BGA Solder Joint
,”
Microelectron. Eng.
,
88
(
5
), pp.
709
714
.
You do not currently have access to this content.