This paper provides a tutorial and summary of the theory of circulant matrices and their application to the modeling and analysis of the free and forced vibration of mechanical structures with cyclic symmetry. Our presentation of the basic theory is distilled from the classic book of Davis (1979, Circulant Matrices, 2nd ed., Wiley, New York) with results, proofs, and examples geared specifically to vibration applications. Our aim is to collect the most relevant results of the existing theory in a single paper, couch the mathematics in a form that is accessible to the vibrations analyst, and provide examples to highlight key concepts. A nonexhaustive survey of the relevant literature is also included, which can be used for further examples and to point the reader to important extensions, applications, and generalizations of the theory.

References

1.
Bladh
,
J. R.
,
Pierre
,
C.
,
Castanier
,
M. P.
, and
Kruse
,
M. J.
,
2002
, “
Dynamic Response Predictions for a Mistuned Industrial Turbomachinery Rotor Using Reduced-Order Modeling
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
311
324
.10.1115/1.1447236
2.
Brillouin
,
L.
,
1953
,
Wave Propagation in Periodic Structures
,
Dover
,
New York
.
3.
Ewins
,
D. J.
,
1973
, “
Vibration Characteristics of Bladed Disc Assemblies
,”
J. Mech. Eng. Sci.
,
15
(
3
), pp.
165
186
.10.1243/JMES_JOUR_1973_015_032_02
4.
Ewins
,
D. J.
,
1976
, “
Vibration Modes of Mistuned Bladed Disks
,”
ASME J. Eng. Power
,
98
(
3
), pp.
349
355
.10.1115/1.3446180
5.
Dye
,
R. C. F.
, and
Henry
,
T. A.
,
1969
, “
Vibration Amplitudes of Compressor Blades Resulting From Scatter in Blade Natural Frequencies
,”
ASME J. Eng. Power
,
91
(
3
), pp.
182
188
.10.1115/1.3574726
6.
Ewins
,
D. J.
,
1969
, “
The Effect of Detuning Upon the Forced Vibrations of Bladed Disks
,”
J. Sound Vib.
,
9
(
1
), pp.
65
79
.10.1016/0022-460X(69)90264-8
7.
Fabunmi
,
J.
,
1980
, “
Forced Vibration of a Single Stage Axial Compressor Rotor
,”
ASME J. Eng. Power
,
102
(
2
), pp.
322
329
.10.1115/1.3230255
8.
Orris
,
R. M.
, and
Petyt
,
M.
,
1974
, “
A Finite Element Study of Harmonic Wave Propagation in Periodic Structures
,”
J. Sound Vib.
,
33
(
2
), pp.
223
236
.10.1016/S0022-460X(74)80108-2
9.
Thomas
,
D. L.
,
1974
, “
Standing Waves in Rotationally Periodic Structures
,”
J. Sound Vib.
,
37
(
2
), pp.
288
290
.10.1016/S0022-460X(74)80337-8
10.
Thomas
,
D. L.
,
1979
, “
Dynamics of Rotationally Periodic Structures
,”
Int. J. Numer. Methods Eng.
,
14
(
1
), pp.
81
102
.10.1002/nme.1620140107
11.
Wildheim
,
J.
,
1981
, “
Excitation of Rotating Circumferentially Periodic Structures
,”
J. Sound Vib.
,
75
(
3
), pp.
397
416
.10.1016/0022-460X(81)90386-2
12.
Wildheim
,
J.
,
1981
, “
Vibrations of Rotating Circumferentially Periodic Structures
,”
Q. J. Mech. Appl. Math.
,
34
(
2
), pp.
213
229
.10.1093/qjmam/34.2.213
13.
Fricker
,
A. J.
, and
Potter
,
S.
,
1981
, “
Transient Forced Vibration of Rotationally Periodic Structures
,”
Int. J. Numer. Methods Eng.
,
17
(
7
), pp.
957
974
.10.1002/nme.1620170703
14.
Williams
,
F. W.
,
1986
, “
An Algorithm for Exact Eigenvalue Calculations for Rotationally Periodic Structures
,”
Int. J. Numer. Methods Eng.
,
23
(
4
), pp.
609
622
.10.1002/nme.1620230407
15.
Williams
,
F. W.
,
1986
, “
Exact Eigenvalue Calculations for Structures With Rotationally Periodic Substructures
,”
Int. J. Numer. Methods Eng.
,
23
(
4
), pp.
695
706
.10.1002/nme.1620230411
16.
Cai
,
C. W.
,
Cheung
,
Y. K.
, and
Chan
,
H. C.
,
1990
, “
Uncoupling of Dynamic Equations for Periodic Structures
,”
J. Sound Vib.
,
139
(
2
), pp.
253
263
.10.1016/0022-460X(90)90886-5
17.
Shen
,
I. Y.
,
1994
, “
Vibration of Rotationally Periodic Structures
,”
J. Sound Vib.
,
172
(
4
), pp.
459
470
.10.1006/jsvi.1994.1189
18.
Kim
,
M.
,
Moon
,
J.
, and
Wickert
,
J. A.
,
2000
, “
Spatial Modulation of Repeated Vibration Modes in Rotationally Periodic Structures
,”
ASME J. Vib. Acoust.
,
122
(
1
), pp.
62
68
.10.1115/1.568443
19.
Kaveh
,
A.
,
2013
, “
Introduction to Symmetry and Regularity
,”
Optimal Analysis of Structures by Concepts of Symmetry and Regularity
,
Springer
,
New York
, pp.
1
14
.
20.
Shi
,
C.
, and
Parker
,
R. G.
, “
Vibration Mode and Natural Frequency Structure of General Cyclically Symmetric Systems
,”
Proc. R. Soc. A
(submitted).
21.
Olson
,
B.
, and
Shaw
,
S.
,
2010
, “
Vibration Absorbers for a Rotating Flexible Structure With Cyclic Symmetry: Nonlinear Path Design
,”
Nonlinear Dyn.
,
60
(
1–2
), pp.
149
182
.10.1007/s11071-009-9587-8
22.
Gozen
,
S.
,
Olson
,
B.
,
Shaw
,
S.
, and
Pierre
,
C.
,
2012
, “
Resonance Suppression in Multi-Degree-of-Freedom Rotating Flexible Structures Using Order-Tuned Absorbers
,”
ASME J. Vib. Acoust.
,
134
(
6
), p.
061016
.10.1115/1.4007564
23.
Petrov
,
E. P.
,
2004
, “
A Method for Use of Cyclic Symmetry Properties in Analysis of Nonlinear Multiharmonic Vibrations of Bladed Disks
,”
ASME J. Turbomach.
,
126
(
1
), pp.
175
183
.10.1115/1.1644558
24.
Jacquet-Richardet
,
G.
,
Ferraris
,
G.
, and
Rieutord
,
P.
,
1996
, “
Frequencies and Modes of Rotating Flexible Bladed Disc-Shaft Assemblies: A Global Cyclic Symmetry Approach
,”
J. Sound Vib.
,
191
(
5
), pp.
901
915
.10.1006/jsvi.1996.0162
25.
Castanier
,
M. P.
,
Ottarsson
,
G.
, and
Pierre
,
C.
,
1997
, “
A Reduced Order Modeling Technique for Mistuned Bladed Disks
,”
ASME J. Vib. Acoust.
,
119
(
3
), pp.
439
447
.10.1115/1.2889743
26.
Omprakash
,
V.
, and
Ramamurti
,
V.
,
1988
, “
Natural Frequencies of Bladed Disks by a Combined Cyclic Symmetry and Rayleigh–Ritz Method
,”
J. Sound Vib.
,
125
(
2
), pp.
357
366
.10.1016/0022-460X(88)90289-1
27.
Laxalde
,
D.
,
Thouverez
,
F.
, and
Lombard
,
J. P.
,
2007
, “
Dynamical Analysis of Multi-Stage Cyclic Structures
,”
Mech. Res. Commun.
,
34
(
4
), pp.
379
384
.10.1016/j.mechrescom.2007.02.004
28.
Laxalde
,
D.
,
Lombard
,
J. P.
, and
Thouverez
,
F.
,
2007
, “
Dynamics of Multistage Bladed Disks Systems
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
1058
1064
.10.1115/1.2747641
29.
Bladh
,
J. R.
,
2001
, “
Efficient Predictions of the Vibratory Response of Mistuned Bladed Disks by Reduced Order Modeling
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
30.
Chang
,
J. Y.
, and
Wickert
,
J. A.
,
2002
, “
Measurement and Analysis of Modulated Doublet Mode Response in Mock Bladed Disks
,”
J. Sound Vib.
,
250
(
3
), pp.
379
400
.10.1006/jsvi.2001.3942
31.
Lin
,
J.
, and
Parker
,
R. G.
,
1999
, “
Analytical Characterization of the Unique Properties of Planetary Gear Free Vibration
,”
ASME J. Vib. Acoust.
,
121
(
3
), pp.
316
321
.10.1115/1.2893982
32.
Lin
,
J.
, and
Parker
,
R. G.
,
2000
, “
Structured Vibration Characteristics of Planetary Gears With Unequally Spaced Planets
,”
J. Sound Vib.
,
233
(
5
), pp.
921
928
.10.1006/jsvi.1999.2581
33.
Parker
,
R. G.
,
2000
, “
A Physical Explanation for the Effectiveness of Planet Phasing to Suppress Planetary Gear Vibration
,”
J. Sound Vib.
,
236
(
4
), pp.
561
573
.10.1006/jsvi.1999.2859
34.
Kiracofe
,
D. R.
, and
Parker
,
R. G.
,
2007
, “
Structured Vibration Modes of General Compound Planetary Gear Systems
,”
ASME J. Vib. Acoust.
,
129
(
1
), pp.
1
16
.10.1115/1.2345680
35.
Wu
,
X.
, and
Parker
,
R. G.
,
2008
, “
Modal Properties of Planetary Gears With an Elastic Continuum Ring Gear
,”
ASME J. Appl. Mech.
,
75
(
3
), p.
031014
.10.1115/1.2839892
36.
Eritenel
,
T.
, and
Parker
,
R. G.
,
2009
, “
Modal Properties of Three-Dimensional Helical Planetary Gears
,”
J. Sound Vib.
,
325
(
1
), pp.
397
420
.10.1016/j.jsv.2009.03.002
37.
Guo
,
Y.
, and
Parker
,
R. G.
,
2010
, “
Purely Rotational Model and Vibration Modes of Compound Planetary Gears
,”
Mech. Mach. Theory
,
45
(
3
), pp.
365
377
.10.1016/j.mechmachtheory.2009.09.001
38.
Parker
,
R. G.
, and
Wu
,
X.
,
2010
, “
Vibration Modes of Planetary Gears With Unequally Spaced Planets and an Elastic Ring Gear
,”
J. Sound Vib.
,
329
(
11
), pp.
2265
2275
.10.1016/j.jsv.2009.12.023
39.
Cooley
,
C. G.
, and
Parker
,
R. G.
,
2012
, “
Vibration Properties of High-Speed Planetary Gears With Gyroscopic Effects
,”
ASME J. Vib. Acoust.
,
134
(
6
), p.
061014
.10.1115/1.4006646
40.
Bahk
,
C. J.
, and
Parker
,
R. G.
,
2011
, “
Analytical Solution for the Nonlinear Dynamics of Planetary Gears
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p.
021007
.10.1115/1.4002392
41.
Cooley
,
C. G.
, and
Parker
,
R. G.
,
2013
, “
Mechanical Stability of High-Speed Planetary Gears
,”
Int. J. Mech. Sci.
,
69
, pp.
59
71
.10.1016/j.ijmecsci.2013.01.025
42.
Lin
,
J.
, and
Parker
,
R. G.
,
2002
, “
Planetary Gear Parametric Instability Caused by Mesh Stiffness Variation
,”
J. Sound Vib.
,
249
(
1
), pp.
129
145
.10.1006/jsvi.2001.3848
43.
Parker
,
R. G.
, and
Wu
,
X.
,
2012
, “
Parametric Instability of Planetary Gears Having Elastic Continuum Ring Gears
,”
ASME J. Vib. Acoust.
,
134
(
4
), p.
041001
.10.1115/1.4005836
44.
Wu
,
X.
, and
Parker
,
R. G.
,
2006
, “
Vibration of Rings on a General Elastic Foundation
,”
J. Sound Vib.
,
295
(
1
), pp.
194
213
.10.1016/j.jsv.2006.01.007
45.
Ivanov
,
V. P.
,
1971
, “
Some Problems of the Vibrations of Blading Rings and Other Elastic Bodies With Cyclic Symmetry
,”
Prochn. Din. Aviats. Dvigatelei
,
6
, pp.
113
132
.
46.
Yu
,
R. C.
, and
Mote
,
C. D.
, Jr.
,
1987
, “
Vibration and Parametric Excitation in Asymmetric Circular Plates Under Moving Loads
,”
J. Sound Vib.
,
119
(
3
), pp.
409
427
.10.1016/0022-460X(87)90406-8
47.
Parker
,
R. G.
, and
Mote
,
C. D.
, Jr.
,
1991
, “
Tuning of the Natural Frequency Spectrum of a Circular Plate by In-Plate Stress
,”
J. Sound Vib.
,
145
(
1
), pp.
95
110
.10.1016/0022-460X(91)90608-M
48.
Tseng
,
J. G.
, and
Wickert
,
J. A.
,
1994
, “
On the Vibration of Bolted Plate and Flange Assemblies
,”
ASME J. Vib. Acoust.
,
116
(
4
), pp.
468
473
.10.1115/1.2930450
49.
Shahab
,
A. A. S.
, and
Thomas
,
J.
,
1987
, “
Coupling Effects of Disc Flexibility on the Dynamic Behaviour of Multi Disc-Shaft Systems
,”
J. Sound Vib.
,
114
(
3
), pp.
435
452
.10.1016/S0022-460X(87)80015-9
50.
Kim
,
H.
, and
Shen
,
I.-Y.
,
2009
, “
Ground-Based Vibration Response of a Spinning, Cyclic, Symmetric Rotor With Gyroscopic and Centrifugal Softening Effects
,”
ASME J. Vib. Acoust.
,
131
(
2
), p.
021007
.10.1115/1.3025847
51.
Kim
,
H.
,
Colonnese
,
N. T. K.
, and
Shen
,
I. Y.
,
2009
, “
Mode Evolution of Cyclic Symmetric Rotors Assembled to Flexible Bearings and Housing
,”
ASME J. Vib. Acoust.
,
131
(
5
), p.
051008
.10.1115/1.3147167
52.
Shaw
,
S. W.
, and
Pierre
,
C.
,
2006
, “
The Dynamic Response of Tuned Impact Absorbers for Rotating Flexible Structures
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
1
), pp.
13
24
.10.1115/1.1991872
53.
Shi
,
C.
, and
Parker
,
R. G.
,
2012
, “
Modal Properties and Stability of Centrifugal Pendulum Vibration Absorber Systems With Equally Spaced, Identical Absorbers
,”
J. Sound Vib.
,
331
(
21
), pp.
4807
4824
.10.1016/j.jsv.2012.05.018
54.
Shi
,
C.
,
Parker
,
R. G.
, and
Shaw
,
S. W.
,
2013
, “
Tuning of Centrifugal Pendulum Vibration Absorbers for Translational and Rotational Vibration Reduction
,”
Mech. Mach. Theory
,
66
, pp.
56
65
.10.1016/j.mechmachtheory.2013.03.004
55.
Shi
,
C.
, and
Parker
,
R. G.
,
2013
, “
Modal Structure of Centrifugal Pendulum Vibration Absorber Systems With Multiple Cyclically Symmetric Groups of Absorbers
,”
J. Sound Vib.
,
332
(
18
), pp.
4339
4353
.10.1016/j.jsv.2013.03.009
56.
Shi
,
C.
, and
Parker
,
R. G.
,
2014
, “
Vibration Modes and Natural Frequency Veering in Three-Dimensional, Cyclically Symmetric Centrifugal Pendulum Vibration Absorber Systems
,”
ASME J. Vib. Acoust.
,
136
(
1
), p.
011014
.10.1115/1.4025678
57.
Cornwell
,
P. J.
, and
Bendiksen
,
O. O.
,
1987
, “
Localization of Vibrations in Large Space Reflectors
,”
AIAA J.
,
25
(
2
), pp.
219
226
.10.2514/3.10084
58.
Chivukula
,
V. B.
, and
Rhoads
,
J. F.
,
2010
, “
Microelectromechanical Bandpass Filters Based on Cyclic Coupling Architectures
,”
J. Sound Vib.
,
329
(
20
), pp.
4313
4332
.10.1016/j.jsv.2010.04.022
59.
Tran
,
D. M.
,
2001
, “
Component Mode Synthesis Methods Using Interface Modes: Application to Structures With Cyclic Symmetry
,”
Comput. Struct.
,
79
(
2
), pp.
209
222
.10.1016/S0045-7949(00)00121-8
60.
Tran
,
D. M.
,
2009
, “
Component Mode Synthesis Methods Using Partial Interface Modes: Application to Tuned and Mistuned Structures With Cyclic Symmetry
,”
Comput. Struct.
,
87
(
17
), pp.
1141
1153
.10.1016/j.compstruc.2009.04.009
61.
Dickens
,
J. M.
, and
Pool
,
K. V.
,
1992
, “
Modal Truncation Vectors and Periodic Time Domain Analysis Applied to a Cyclic Symmetry Structure
,”
Comput. Struct.
,
45
(
4
), pp.
685
696
.10.1016/0045-7949(92)90487-K
62.
Wu
,
G.
, and
Yang
,
H.
,
1994
, “
The Use of Cyclic Symmetry in Two-Dimensional Elastic Stress Analysis by BEM
,”
Int. J. Solids Struct.
,
31
(
2
), pp.
279
290
.10.1016/0020-7683(94)90011-6
63.
He
,
Y.
,
Yang
,
H.
,
Xu
,
M.
, and
Deeks
,
A. J.
,
2013
, “
A Scaled Boundary Finite Element Method for Cyclically Symmetric Two-Dimensional Elastic Analysis
,”
Comput. Struct.
,
120
, pp.
1
8
.10.1016/j.compstruc.2013.01.006
64.
Stewart
,
I.
, and
Parker
,
M.
,
2008
, “
Periodic Dynamics of Coupled Cell Networks II: Cyclic Symmetry
,”
Dyn. Syst.
,
23
(
1
), pp.
17
41
.10.1080/14689360701631126
65.
Golubitsky
,
M.
, and
Schaeffer
,
D.
,
1985
, “
Singularities and Groups in Bifurcation Theory. Volume I” (Applied Mathematical Sciences Volume 51)
,
Springer
,
New York
.
66.
McWeeny
,
R.
,
1963
, “
Topic 1: Mathematical Techniques
,”
Symmetry: An Introduction to Group Theory and its Applications (The International Encyclopedia of Physical Chemistry and Chemical Physics)
, Vol.
3
,
H.
Jones
, ed.,
Macmillan
,
New York
.
67.
Fässler
,
A.
, and
Stiefel
,
E.
,
1992
,
Group Theoretical Methods and Their Applications
,
Birkhäuser
,
Boston
.
68.
Sagan
,
B. E.
,
2001
,
The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions
, 2nd ed., Vol.
203
(Graduate Texts in Mathematics),
Springer
,
New York
.
69.
Banakh
,
L. Y.
, and
Kempner
,
M.
,
2010
,
Vibrations of Mechanical Systems With Regular Structure
,
Springer
,
New York
.
70.
Evensen
,
D. A.
,
1976
, “
Vibration Analysis of Multi-Symmetric Structures
,”
AIAA J.
,
14
(
4
), pp.
446
453
.10.2514/3.61383
71.
Anderson
,
P. W.
,
1958
, “
Absence of Diffusion in Certain Random Lattices
,”
Phys. Rev.
,
109
(
5
), pp.
1492
1505
.10.1103/PhysRev.109.1492
72.
Hodges
,
C. H.
,
1982
, “
Confinement of Vibration by Structural Irregularity
,”
J. Sound Vib.
,
82
(
3
), pp.
411
424
.10.1016/S0022-460X(82)80022-9
73.
Hodges
,
C. H.
, and
Woodhouse
,
J.
,
1983
, “
Vibration Isolation From Irregularity in a Nearly Periodic Structure: Theory and Measurements
,”
J. Acoust. Soc. Am.
,
74
(
3
), pp.
894
905
.10.1121/1.389847
74.
Pierre
,
C.
, and
Dowell
,
E. H.
,
1987
, “
Localization of Vibrations by Structural Irregularity
,”
J. Sound Vib.
,
114
(
3
), pp.
549
564
.10.1016/S0022-460X(87)80023-8
75.
Happawana
,
G. S.
,
Bajaj
,
A. K.
, and
Nwokah
,
O. D. I.
,
1993
, “
A Singular Perturbation Analysis of Eigenvalue Veering and Modal Sensitivity in Perturbed Linear Periodic Systems
,”
J. Sound Vib.
,
160
(
2
), pp.
225
242
.10.1006/jsvi.1993.1019
76.
Wei
,
S. T.
, and
Pierre
,
C.
,
1988
, “
Localization Phenomena in Mistuned Assemblies With Cyclic Symmetry I: Free Vibrations
,”
J. Vib., Acoust., Stress, Reliab. Des.
,
110
(
4
), pp.
429
438
.10.1115/1.3269547
77.
Wei
,
S. T.
, and
Pierre
,
C.
,
1988
, “
Localization Phenomena in Mistuned Assemblies With Cyclic Symmetry II: Forced Vibrations
,”
J. Vib., Acoust., Stress, Reliab. Des.
,
110
(
4
), pp.
439
449
.10.1115/1.3269548
78.
Valero
,
N. A.
, and
Bendiksen
,
O. O.
,
1986
, “
Vibration Characteristics of Mistuned Shrouded Blade Assemblies
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
293
299
.10.1115/1.3239902
79.
Castanier
,
M.
, and
Pierre
,
C.
,
2006
, “
Modeling and Analysis of Mistuned Bladed Disk Vibration: Status and Emerging Directions
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
384
396
.10.2514/1.16345
80.
Lim
,
S. H.
,
Pierre
,
C.
, and
Castanier
,
M. P.
,
2006
, “
Predicting Blade Stress Levels Directly From Reduced-Order Vibration Models of Mistuned Bladed Disks
,”
ASME J. Turbomach.
,
128
(
1
), pp.
206
210
.10.1115/1.2098754
81.
Vakais
,
A. F.
, and
Cetinkaya
,
C.
,
1993
, “
Mode Localization in a Class of Multidegree-of-Freedom Nonlinear Systems With Cyclic Symmetry
,”
SIAM J. Appl. Math.
,
53
(
1
), pp.
265
282
.10.1137/0153016
82.
Vakakis
,
A. F.
,
1992
, “
Dynamics of a Nonlinear Periodic Structure With Cyclic Symmetry
,”
Acta Mech.
,
95
(
1–4
), pp.
197
226
.10.1007/BF01170813
83.
Georgiades
,
F.
,
Peeters
,
M.
,
Kerschen
,
G.
,
Golinval
,
J. C.
, and
Ruzzene
,
M.
,
2009
, “
Modal Analysis of a Nonlinear Periodic Structure With Cyclic Symmetry
,”
AIAA J.
,
47
(
4
), pp.
1014
1025
.10.2514/1.40461
84.
King
,
M. E.
, and
Vakakis
,
A. F.
,
1995
, “
A Very Complicated Structure of Resonances in a Nonlinear System With Cyclic Symmetry: Nonlinear Forced Localization
,”
Nonlinear Dyn.
,
7
(
1
), pp.
85
104
.10.1007/BF00045127
85.
Samaranayake
,
S.
,
Bajaj
,
A. K.
, and
Nwokah
,
O. D. I.
,
1995
, “
Amplitude Modulated Dynamics and Bifurcations in the Resonant Response of a Structure With Cyclic Symmetry
,”
Acta Mech.
,
109
(
1–4
), pp.
101
125
.10.1007/BF01176819
86.
Samaranayake
,
S.
, and
Bajaj
,
A. K.
,
1997
, “
Subharmonic Oscillations in Harmonically Excited Mechanical Systems With Cyclic Symmetry
,”
J. Sound Vib.
,
206
(
1
), pp.
39
60
.10.1006/jsvi.1997.1075
87.
Samaranayake
,
S.
,
Samaranayake
,
G.
, and
Bajaj
,
A. K.
,
2000
, “
Resonant Vibrations in Harmonically Excited Weakly Coupled Mechanical Systems With Cyclic Symmetry
,”
Chaos, Solitons Fractals
,
11
(
10
), pp.
1519
1534
.10.1016/S0960-0779(99)00075-2
88.
Vakakis
,
A. F.
,
Nayfeh
,
T.
, and
King
,
M.
,
1993
, “
A Multiple-Scales Analysis of Nonlinear Localized Modes in a Cyclic Periodic System
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
388
397
.10.1115/1.2900806
89.
Briggs
,
W. L.
, and
Henson
,
V. E.
,
1995
,
The DFT: Owner's Manual for the Discrete Fourier Transform
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
90.
Proakis
,
J. G.
, and
Manolakis
,
D. K.
,
2006
,
Digital Signal Processing
, 4th ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
91.
Dickinson
,
B. W.
, and
Steiglitz
,
K.
,
1982
, “
Eigenvectors and Functions of the Discrete Fourier Transform
,”
IEEE Trans. Acoust. Speech Signal Process
,
30
(
1
), pp.
25
31
.10.1109/TASSP.1982.1163843
92.
Olson
,
B. J.
,
2006
, “
Order-Tuned Vibration Absorbers for Systems With Cyclic Symmetry With Applications to Turbomachinery
,” Ph.D. dissertation, Michigan State University, East Lansing, MI.
93.
Olson
,
B. J.
,
Shaw
,
S. W.
, and
Pierre
,
C.
,
2005
, “
Order-Tuned Vibration Absorbers for Cyclic Rotating Flexible Structures
,”
ASME
Paper No. DETC2005-84641.10.1115/DETC2005-84641
94.
Oson
,
B. J.
, and
Shaw
,
S. W.
,
2008
, “
Vibration Absorbers for Cyclic Rotating Flexible Structures: Linear and Nonlinear Tuning
,”
ASME
Paper No. SMASIS08-632.10.1115/SMASIS2008-632
95.
Gozen
,
S.
,
Olson
,
B.
,
Shaw
,
S.
, and
Pierre
,
C.
,
2009
, “
Resonance Suppression in Multi-DOF Rotating Flexible Structures Using Order-Tuned Absorbers
,”
ASME
Paper No. DETC2009-86287.10.1115/DETC2009-86287
96.
Davis
,
P. J.
,
1979
,
Circulant Matrices
, 2nd ed.,
Wiley
,
New York
.
97.
Óttarsson
,
G. S.
,
1994
, “
Dynamic Modeling and Vibration Analysis of Mistuned Bladed Disks
,” Ph.D. dissertation, University of Michigan, Ann Arbor, MI.
98.
Leon
,
S. J.
,
2009
,
Linear Algebra With Applications
, 8th ed.,
Pearson
,
Upper Saddle River, NJ
.
99.
Meirovitch
,
L.
,
1997
,
Principles and Techniques of Vibrations
,
Prentice Hall
,
Upper Saddle River, NJ
.
100.
Wagner
,
L. F.
, and
Griffin
,
J. H.
,
1996
, “
Forced Harmonic Response of Grouped Blade Systems: Part I–Discrete Theory
,”
ASME J. Eng. Gas Turbines Power
,
118
(
1
), pp.
130
136
.10.1115/1.2816528
101.
Brown
,
J. W.
, and
Churchill
,
R. V.
,
1996
,
Complex Variables and Applications
, 6th ed.,
McGraw-Hill
,
New York
.
102.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1965
,
Handbook of Mathematical Functions
,
Dover
,
New York
.
103.
Allen
,
J. B.
, and
Rabiner
,
L. R.
,
1977
, “
A Unified Approach to Short-Time Fourier Analysis and Synthesis
,”
Proc. IEEE
,
65
(
11
), pp.
1558
1564
.10.1109/PROC.1977.10770
104.
Burrus
,
C. S.
, and
Parks
,
T. W.
,
1985
,
DFT/FFT and Convolution Algorithms
,
Wiley
,
New York
.
105.
Champeney
,
D. C.
,
1987
,
A Handbook of Fourier Theorems
,
Cambridge University
,
Cambridge, UK
.
106.
Cooley
,
J.
, and
Tukey
,
J.
,
1965
, “
An Algorithm for the Machine Computation of the Complex Fourier Series
,”
Math. Comput.
,
19
, pp.
297
301
.10.1090/S0025-5718-1965-0178586-1
107.
Duhamel
,
P.
, and
Vetterli
,
M.
,
1990
, “
Fast Fourier Transforms: A Tutorial Review and State of the Art
,”
Signal Process
,
19
, pp.
259
299
.10.1016/0165-1684(90)90158-U
108.
Heideman
,
M. T.
,
Johnson
,
D. H.
, and
Burrus
,
C. S.
,
1984
, “
Gauss and the History of the FFT
,”
IEEE Signal Process Mag.
,
1
, pp.
14
21
.10.1109/MASSP.1984.1162257
109.
Johnson
,
S. G.
, and
Frigo
,
M.
,
2007
, “
A Modified Split-Radix FFT With Fewer Arithmetic Operations
,”
IEEE Trans. Signal Process
,
55
(
1
), pp.
111
119
.10.1109/TSP.2006.882087
110.
Kolba
,
D.
, and
Parks
,
T.
,
1977
, “
A Prime Factor FFT Algorithm Using High-Speed Convolution
,”
IEEE Trans. Acoust. Speech Signal Process
,
29
(
4
), pp.
281
294
.10.1109/TASSP.1977.1162973
111.
Chang
,
J. Y.
, and
Wickert
,
J. A.
,
2001
, “
Response of Modulated Doublet Modes to Traveling Wave Excitation
,”
J. Sound Vib.
,
242
(
1
), pp.
69
83
.10.1006/jsvi.2000.3363
112.
Proakis
,
J. G.
, and
Manolakis
,
D. G.
,
1988
,
Introduction to Digital Signal Processing
,
Macmillan
,
New York
.
113.
Williams
,
C. S.
,
1986
,
Designing Digital Filters
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
114.
Óttarsson
,
G. S.
, and
Pierre
,
C.
,
1996
, “
A Transfer Matrix Approach to Vibration Localization in Mistuned Blade Assemblies
,”
J. Sound Vib.
,
197
(
5
), pp.
589
618
.10.1006/jsvi.1996.0550
115.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2001
, “
Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks, Part I: Theoretical Models
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
89
99
.10.1115/1.1338947
116.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2001
, “
Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks, Part II: Application
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
100
108
.10.1115/1.1338948
117.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
1999
, “
Reduced Order Modeling and Vibration Analysis of Mistuned Bladed Disk Assemblies With Shrouds
,”
ASME J. Eng. Gas Turbines Power
,
121
(
3
), pp.
515
522
.10.1115/1.2818503
118.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1989
, “
Modal Interactions in Dynamical and Structural Systems
,”
ASME Appl. Mech. Rev.
,
42
(
11S
), pp.
S175
S201
.10.1115/1.3152389
119.
Nayfeh
,
T.
, and
Vakakis
,
A. F.
,
1994
, “
Subharmonic Travelling Waves in a Geometrically Nonlinear Circular Plate
,”
Int. J. Non-Linear Mech.
,
29
(
2
), pp.
233
246
.10.1016/0020-7462(94)90042-6
You do not currently have access to this content.