This review summarizes the most recent advances in multifunctional polymer nanocomposites reinforced by carbon nanotubes and aims to stimulate further research in this field. Experimental and theoretical investigations of the mechanical, thermal, and electrical properties of carbon nanotubes and their composite counterparts are presented. This review identifies the processing challenges associated with this class of materials and presents techniques that are currently being adopted to address these challenges and their relative merits. This review suggests possible future trends, opportunities, and challenges in the field and introduces the use of these multifunctional nanocomposites in structural health monitoring applications.
1.
Kim
, B. C.
, Park
, S. W.
, and Lee
, D. G.
, 2008, “Fracture Toughness of the Nano-Particle Reinforced Epoxy Composite
,” Compos. Struct.
0263-8223, 86
(1–3
), pp. 69
–77
.2.
Zhai
, L. L.
, Ling
, G. P.
, and Wang
, Y. W.
, 2008, “Effect of Nano-Al2O3 on Adhesion Strength of Epoxy Adhesive and Steel
,” Int. J. Adhes. Adhes.
0143-7496, 28
(1–2
), pp. 23
–28
.3.
Salehi-Khojin
, A.
, Jana
, S.
, and Wei-Hong
, Z.
, 2007, “Thermal-Mechanical Properties of a Graphitic-Nanofibers Reinforced Epoxy
,” J. Nanosci. Nanotechnol.
1533-4880, 7
(3
), pp. 898
–906
.4.
Huang
, C. K.
, 2007, “Prediction Model of Thermal Conductivity for Composite Materials With Nano Particles
,” NSTI Nanotechnology Conference and Trade Show–NSTI Nanotech 2007 Technical Proceedings
, Vol. 4
, pp. 320
–323
.5.
Qinghua
, L.
, and Jianhua
, Z.
, 2007, “Effects of Nano Fillers on the Conductivity, Adhesion Strength, and Reliability of Isotropic Conductive Adhesives (ICAs)
,” Key Eng. Mater.
1013-9826, 353–358
, pp. 2879
–2882
.6.
Moniruzzaman
, M.
, and Winey
, K. I.
, 2006, “Polymer Nanocomposites Containing Carbon Nanotubes
,” Macromolecules
0024-9297, 39
, pp. 5194
–5205
.7.
Thostenson
, E. T.
, Ziaee
, S.
, and Chou
, T. W.
, 2009, “Processing and Electrical Properties of Carbon Nanotube/Vinyl Ester Nanocomposites
,” Compos. Sci. Technol.
0266-3538, 69
(6
), pp. 801
–804
.8.
Gojny
, F. H.
, Wichmann
, M. H. G.
, Kopke
, U.
, Fiedler
, B.
, and Schulte
, K.
, 2004, “Carbon Nanotube Reinforced Epoxy Composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content
,” Compos. Sci. Technol.
0266-3538, 64
(15
), pp. 2363
–2371
.9.
Gojny
, F. H.
, Wichmann
, M. H. G.
, Fiedler
, B.
, Kinloch
, I. A.
, Bauhofer
, W.
, Windle
, A. H.
, and Schulte
, K.
, 2006, “Evaluation and Identification of Electrical and Thermal Conduction Mechanisms in Carbon Nanotube/Epoxy Composites
,” Polymer
0032-3861, 47
(6
), pp. 2036
–2045
.10.
Biercuk
, M. J.
, Llaguno
, M. C.
, Radosavljevic
, M.
, Hyun
, J. K.
, Johnson
, A. T.
, and Fischer
, J. E.
, 2002, “Carbon Nanotube Composites for Thermal Management
,” Appl. Phys. Lett.
0003-6951, 80
(15
), pp. 2767
–2769
.11.
Xie
, L.
, Xu
, F.
, Qiu
, F.
, Lu
, H.
, and Yang
, Y.
, 2007, “Single-Walled Carbon Nanotubes Functionalized With High Bonding Density of Polymer Layers and Enhanced Mechanical Properties of Composites
,” Macromolecules
0024-9297, 40
(9
), pp. 3296
–3305
.12.
Liu
, J. Q.
, Xiao
, T.
, Liao
, K.
, and Wu
, P.
, 2007, “Interfacial Design of Carbon Nanotube Polymer Composites: A Hybrid System of Noncovalent and Covalent Functionalizations
,” Nanotechnology
0957-4484, 18
(16
), p. 165701
.13.
Koval’chuk
, A. A.
, Shevchenko
, V. G.
, Shchegolikhin
, A. N.
, Nedorezova
, P. M.
, Klyamkina
, A. N.
, and Aladyshev
, A. M.
, 2008, “Effect of Carbon Nanotube Functionalization on the Structural and Mechanical Properties of Polypropylene/MWCNT Composites
,” Macromolecules
0024-9297, 41
(20
), pp. 7536
–7542
.14.
Yang
, K.
, Gu
, M.
, Guo
, Y.
, Pan
, X.
, and Mu
, G.
, 2009, “Effects of Carbon Nanotube Functionalization on the Mechanical and Thermal Properties of Epoxy Composites
,” Carbon
0008-6223, 47
(7
), pp. 1723
–1737
.15.
Meguid
, S. A.
, and Sun
, Y.
, 2004, “On the Tensile and Shear Strength of Nano-Reinforced Composite Interfaces
,” Mater. Des.
0264-1275, 25
(4
), pp. 289
–296
.16.
Dai
, H.
, Hafner
, J. H.
, Rinzler
, A. G.
, Colbert
, D. T.
, and Smalley
, R. E.
, 1996, “Nanotubes as Nanoprobes in Scanning Probe Microscopy
,” Nature (London)
0028-0836, 384
(6605
), pp. 147
–150
.17.
Wang
, Q. H.
, Corrigan
, T. D.
, Dai
, T. Y.
, Chang
, R. P. H.
, and Krauss
, A. R.
, 1997, “Field Emission From Nanotube Bundle Emitters at Low Fields
,” Appl. Phys. Lett.
0003-6951, 70
(24
), pp. 3308
–3310
.18.
de Heer
, W. A.
, Chatelain
, A.
, and Ugarte
, D.
, 1995, “A Carbon Nanotube Field-Emission Source
,” Science
0036-8075, 270
(5239
), pp. 1179
–1180
.19.
Rinzler
, A. G.
, Hafner
, J. H.
, Nikolaev
, P.
, Lou
, L.
, Kim
, S. G.
, TomRanek
, D.
, Nordlander
, P.
, Colbert
, D. T.
, and Smalley
, R. E.
, 1995, “Unraveling Nanotubes: Field Emission From an Atomic Wire
,” Science
0036-8075, 269
(5230
), pp. 1550
–1553
.20.
Semet
, V.
, Binh
, V. T.
, Vincent
, P.
, Guillot
, D.
, Teo
, K. B. K.
, Chhowalla
, M.
, Amaratunga
, G. A. J.
, Milne
, W. I.
, Legagneux
, P.
, and Pribat
, D.
, 2002, “Field Electron Emission From Individual Carbon Nanotubes of a Vertically Aligned Array
,” Appl. Phys. Lett.
0003-6951, 81
(2
), pp. 343
–345
.21.
Dillon
, A. C.
, Jones
, K. M.
, Bekkedahl
, T. A.
, Kiang
, C. H.
, Bethune
, D. S.
, and Heben
, M. J.
, 1997, “Storage of Hydrogen in Single-Walled Carbon Nanotubes
,” Nature (London)
0028-0836, 386
(6623
), pp. 377
–379
.22.
Yao
, Z.
, Postma
, H. W. C.
, Balents
, L.
, and Dekker
, C.
, 1999, “Carbon Nanotube Intramolecular Junctions
,” Nature (London)
0028-0836, 402
(6759
), pp. 273
–276
.23.
Tans
, S. J.
, Verschueren
, A. R. M.
, and Dekker
, C.
, 1998, “Room-Temperature Transistor Based on a Single Carbon Nanotube
,” Nature (London)
0028-0836, 393
(6680
), pp. 49
–52
.24.
Bachtold
, A.
, Hadley
, P.
, Nakanishi
, T.
, and Dekker
, C.
, 2001, “Logic Circuits With Carbon Nanotube Transistors
,” Science
0036-8075, 294
(5545
), pp. 1317
–1320
.25.
Huang
, Y.
, Duan
, X.
, Cui
, Y.
, Lauhon
, L. J.
, Kim
, K. -H.
, and Liber
, C. M.
, 2001, “Logic Gates and Computation From Assembled Nanowire Building Blocks
,” Science
0036-8075, 294
(5545
), pp. 1313
–1317
.26.
Derycke
, V.
, Martel
, R.
, Appenzeller
, J.
, and Avouris
, P.
, 2001, “Carbon Nanotube Inter-and Intramolecular Logic Gates
,” Nano Lett.
1530-6984, 1
(9
), pp. 453
–456
.27.
Iijima
, S.
, 1991, “Helical Microtubules of Graphitic Carbon
,” Nature (London)
0028-0836, 354
(6348
), pp. 56
–58
.28.
Oberlin
, A.
, Endo
, M.
, and Koyama
, T.
, 1976, “Filamentous Growth of Carbon Through Benzene Decomposition
,” J. Cryst. Growth
0022-0248, 32
(3
), pp. 335
–349
.29.
Radushkevich
, L. V.
, and Lukyanovich
, V. M.
, 1952, “O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte
,” Zurn. Fisica Chimica
, 26
, pp. 88
–95
.30.
Saito
, Y.
, Yoshikawa
, T.
, Bandow
, S.
, Tomita
, M.
, and Hayashi
, T.
, 1993, “Interlayer Spacings in Carbon Nanotubes
,” Phys. Rev. B
0556-2805, 48
(3
), pp. 1907
–1909
.31.
Zhou
, O.
, Fleming
, R. M.
, Murphy
, D. W.
, Chen
, C. H.
, Haddon
, R. C.
, Ramirez
, A. P.
, and Glarum
, S. H.
, 1994, “Defects in Carbon Nanostructures
,” Science
0036-8075, 263
(5154
), pp. 1744
–1747
.32.
Li
, C.
, and Chou
, T. -W.
, 2003, “A Structural Mechanics Approach for the Analysis of Carbon Nanotubes
,” Int. J. Solids Struct.
0020-7683, 40
(10
), pp. 2487
–2499
.33.
Lu
, J. P.
, 1997, “Elastic Properties of Carbon Nanotubes and Nanoropes
,” Phys. Rev. Lett.
0031-9007, 79
(7
), pp. 1297
–1300
.34.
Hernández
, E.
, Goze
, C.
, Bernier
, P.
, and Rubio
, A.
, 1998, “Elastic Properties of C and BxCyMZ Composite Nanotubes
,” Phys. Rev. Lett.
0031-9007, 80
(20
), pp. 4502
–4505
.35.
Jin
, Y.
, and Yuan
, F. G.
, 2003, “Simulation of Elastic Properties of Single-Walled Carbon Nanotubes
,” Compos. Sci. Technol.
0266-3538, 63
(11
), pp. 1507
–1515
.36.
Tombler
, T. W.
, Zhou
, C.
, Alexseyev
, L.
, Kong
, J.
, Dai
, H.
, Liu
, L.
, Jayanthi
, C. S.
, Tang
, M.
, and Wu
, S. -Y.
, 2000, “Reversible Electromechanical Characteristics of Carbon Nanotubes Under Local-Probe Manipulation
,” Nature (London)
0028-0836, 405
(6788
), pp. 769
–772
.37.
Yu
, M. F.
, Files
, B. S.
, Arepalli
, S.
, and Ruoff
, R. S.
, 2000, “Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties
,” Phys. Rev. Lett.
0031-9007, 84
(24
), pp. 5552
–5555
.38.
Harris
, P. J. F.
, 2001, Carbon Nanotubes and Related Structures
, Cambridge University Press
, Cambridge, UK
.39.
Lourie
, O.
, and Wagner
, H. D.
, 1998, “Evaluation of Young’s Modulus of Carbon Nanotubes by Micro-Raman Spectroscopy
,” J. Mater. Res.
0884-2914, 13
(9
), pp. 2418
–2422
.40.
Yu
, M. F.
, Lourie
, O.
, Dyer
, M. J.
, Moloni
, K.
, Kelly
, T. F.
, and Ruoff
, R. S.
, 2000, “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load
,” Science
0036-8075, 287
(5453
), pp. 637
–640
.41.
Krishnan
, A.
, Dujardin
, E.
, Ebbesen
, T. W.
, Yianilos
, P. N.
, and Treacy
, M. M. J.
, 1998, “Young’s Modulus of Single-Walled Nanotubes
,” Phys. Rev. B
0556-2805, 58
(20
), pp. 14013
–14019
.42.
Salvetat
, J. P.
, Briggs
, G. A. D.
, Bonard
, J. M.
, Bacsa
, R. R.
, Kulik
, A. J.
, Stockli
, T.
, Burnham
, N. A.
, and Forro
, L.
, 1999, “Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes
,” Phys. Rev. Lett.
0031-9007, 82
(5
), pp. 944
–947
.43.
Walters
, D. A.
, Ericson
, L. M.
, Casavant
, M. J.
, Liu
, J.
, Colbert
, D. T.
, Smith
, K. A.
, and Smalley
, R. E.
, 1999, “Elastic Strain of Freely Suspended Single-Wall Carbon Nanotube Ropes
,” Appl. Phys. Lett.
0003-6951, 74
(25
), pp. 3803
–3805
.44.
Cumings
, J.
, and Zettl
, A.
, 2000, “Low-Friction Nanoscale Linear Bearing Realized From Multiwall Carbon Nanotubes
,” Science
0036-8075, 289
, pp. 602
–604
.45.
Chandraseker
, K.
, and Mukherjee
, S.
, 2007, “Atomistic-Continuum and Ab Initio Estimation of the Elastic Moduli of Single-Walled Carbon Nanotubes
,” Comput. Mater. Sci.
0927-0256, 40
, pp. 147
–158
.46.
Troya
, D.
, Mielke
, S. L.
, and Schatz
, G. C.
, 2003, “Carbon Nanotube Fracture—Differences Between Quantum Mechanical Mechanisms and Those of Empirical Potentials
,” Chem. Phys. Lett.
0009-2614, 382
, pp. 133
–141
.47.
Ding
, F.
, 2005, “Theoretical Study of the Stability of Defects in Single-Walled Carbon Nanotubes as a Function of Their Distance From the Nanotube End
,” Phys. Rev. B
0556-2805, 72
, p. 245409
.48.
An
, W.
, Wu
, X.
, Yang
, J. L.
, and Zeng
, X. C.
, 2007, “Adsorption and Surface Reactivity on Single-Walled Boron Nitride Nanotubes Containing Stone-Wales Defects
,” J. Phys. Chem. C
1932-7447, 111
, pp. 14105
–14112
.49.
Galano
, A.
, and Francisco-Marquez
, M.
, 2008, “Reactivity of Silicon and Germanium Doped CNTs Toward Aromatic Sulfur Compounds: A Theoretical Approach
,” Chem. Phys.
0301-0104, 345
, pp. 87
–94
.50.
Zhao
, J.
, and Ding
, Y.
, 2008, “Silicon Carbide Nanotubes Functionalized by Transition Metal Atoms: A Density-Functional Study
,” J. Phys. Chem. C
1932-7447, 112
, pp. 2558
–2564
.51.
Wang
, C.
, Zhou
, G.
, Liu
, H.
, Wu
, J.
, Qiu
, Y.
, Gu
, B.
, and Duan
, W.
, 2006, “Chemical Functionalisation of Carbon Nanotubes by Carboxyl Groups on Stone-Wales Defects: A Density Functional Theory Study
,” J. Phys. Chem. B
1089-5647, 110
, pp. 10266
–10271
.52.
Cao
, G.
, and Chen
, X.
, 2006, “Buckling Behavior of Single-Walled Carbon Nanotubes and a Targeted Molecular Mechanics Approach
,” Phys. Rev. B
0556-2805, 74
, p. 165422
.53.
Gong
, N.
, Liang
, Y.
, Yao
, Y.
, and Liu
, B.
, 2008, “Static and Dynamic Analysis of Carbon Nanotube Cantilever Based on Molecular Dynamics Simulation
,” Key Eng. Mater.
1013-9826, 375–376
, pp. 631
–635
.54.
Buehler
, M.
, Kong
, Y.
, and Gao
, H.
, 2004, “Deformation Mechanisms of Very Long Single-Wall Carbon Nanotubes Subject to Compressive Loading
,” ASME J. Eng. Mater. Technol.
0094-4289, 126
, pp. 245
–249
.55.
Esfarjani
, K.
, Gorjizadeh
, N.
, and Nasrollahi
, Z.
, 2006, “Molecular Dynamics of Single Wall Carbon Nanotube Growth on Nickel Surface
,” Comput. Mater. Sci.
0927-0256, 36
, pp. 117
–120
.56.
Zhao
, X.
, and Cummings
, P. T.
, 2006, “Molecular Dynamics Study of Carbon Nanotube Oscillators Revisited
,” J. Chem. Phys.
0021-9606, 124
, p. 134705
.57.
Cao
, G.
, and Chen
, X.
, 2007, “The Effects of Chirality and Boundary Conditions on the Mechanical Properties of Single-Walled Carbon Nanotubes
,” Int. J. Solids Struct.
0020-7683, 44
, pp. 5447
–5465
.58.
Cao
, G.
, and Chen
, X.
, 2006, “Buckling of Single-Walled Carbon Nanotubes Upon Bending: Molecular Dynamics Simulations and the Finite Element Method
,” Phys. Rev. B
0556-2805, 73
, p. 155435
.59.
Yakobson
, B. I.
, Brabec
, C. J.
, and Bernhole
, J.
, 1996, “Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,” Phys. Rev. Lett.
0031-9007, 76
, pp. 2511
–2514
.60.
Pantano
, A.
, Parks
, D. M.
, and Boyce
, M. C.
, 2004, “Mechanics of Deformation of Single-and Multi-Wall Carbon Nanotubes
,” J. Mech. Phys. Solids
0022-5096, 52
, pp. 789
–821
.61.
Giannopoulos
, G. I.
, Kakavas
, P. A.
, and Anifantis
, N. K.
, 2008, “Evaluation of the Effective Mechanical Properties of Single Walled Carbon Nanotubes Using a Spring Based Finite Element Approach
,” Comput. Mater. Sci.
0927-0256, 41
, pp. 561
–569
.62.
To
, C. W. S.
, 2006, “Bending and Shear Moduli of Single-Walled Carbon Nanotubes
,” Finite Elem. Anal. Design
0168-874X, 42
, pp. 404
–413
.63.
Silvestre
, N.
, 2008, “Length Dependence of Critical Measures in Single-Walled Carbon Nanotubes
,” Int. J. Solids Struct.
0020-7683, 45
, pp. 4902
–4920
.64.
Wang
, O.
, and Varadan
, V. K.
, 2005, “Stability Analysis of Carbon Nanotubes via Continuum Models
,” Smart Mater. Struct.
0964-1726, 14
, pp. 281
–286
.65.
Maiti
, A.
, 2008, “Multiscale Modeling With Carbon Nanotubes
,” Microelectron. J.
0026-2692, 39
, pp. 208
–221
.66.
Ruoff
, R. S.
, Qian
, D.
, and Liu
, W. K.
, 2003, “Mechanical Properties of Carbon Nanotubes, Theoretical Predictions and Experimental Measurements
,” C. R. Phys.
1631-0705, 4
, pp. 993
–1008
.67.
Collins
, P. G.
, Zettl
, A.
, Bando
, H.
, Thess
, A.
, and Smalley
, R. E.
, 1997, “Nanotube Nanodevice
,” Science
0036-8075, 278
, pp. 100
–102
.68.
Song
, S. N.
, Wang
, X. K.
, Chang
, R. P. H.
, and Ketterson
, J. B.
, 1994, “Electronic Properties of Graphite Nanotubes From Galvanomagnetic Effects
,” Phys. Rev. Lett.
0031-9007, 72
(5
), pp. 697
–700
.69.
Langer
, L.
, Stockman
, L.
, Heremans
, J. P.
, Bayot
, V.
, Olk
, C. H.
, Van Haesendonck
, C.
, Bruynseraede
, Y.
, and Issi
, J. -P.
, 1994, “Electrical Resistance of a Carbon Nanotube Bundle
,” J. Mater. Res.
0884-2914, 9
, pp. 927
–932
.70.
Langer
, L.
, Bayot
, V.
, Grivei
, B.
, Issi
, J. -P.
, Heremans
, J. P.
, Olk
, C. H.
, Stockman
, L.
, Van Haesendonck
, C.
, and Bruynseraede
, Y.
, 1996, “Quantum Transport in a Multiwalled Carbon Nanotube
,” Phys. Rev. Lett.
0031-9007, 76
(3
), pp. 479
–482
.71.
Tans
, S. J.
, Devoret
, M. H.
, Dai
, H.
, Thess
, A.
, Smalley
, R. E.
, Geerligs
, L. J.
, and Dekker
, C.
, 1997, “Individual Single-Wall Carbon Nanotubes as Quantum Wires
,” Nature (London)
0028-0836, 386
(6624
), pp. 474
–477
.72.
Bachtold
, A.
, Strunk
, C.
, Salvetat
, J. -P.
, Bonard
, J. -M.
, Forró
, L.
, Nussbaumer
, T.
, and Schönenberger
, C.
, 1999, “Aharonov–Bohm Oscillations in Carbon Nanotubes
,” Nature (London)
0028-0836, 397
(6721
), pp. 673
–675
.73.
Bezryadin
, A.
, Verschueren
, A. R. M.
, Tans
, S. J.
, and Dekker
, C.
, 1998, “Multiprobe Transport Experiments on Individual Single-Wall Carbon Nanotubes
,” Phys. Rev. Lett.
0031-9007, 80
, pp. 4036
–4039
.74.
Paulson
, S.
, Falvo
, M. R.
, Snider
, N.
, Heiser
, A.
, Hudson
, T.
, Seegar
, A.
, Taylor
, R. M.
, Superfine
, R.
, and Washburn
, S.
, 1999, “In Situ Resistance Measurements of Strained Carbon Nanotubes
,” Appl. Phys. Lett.
0003-6951, 75
(19
), pp. 2936
–2938
.75.
Tian
, W.
, and Datta
, S.
, 1994, “Aharonov-Bohm-Type Effect in Graphene Tubules: A Landauer Approach
,” Phys. Rev. B
0556-2805, 49
(7
), pp. 5097
–5100
.76.
Saito
, R.
, Dresselhaus
, G.
, and Dresselhaus
, M. S.
, 1996, “Tunneling Conductance of Connected Carbon Nanotubes
,” Phys. Rev. B
0556-2805, 53
(4
), pp. 2044
–2050
.77.
Chico
, L.
, Benedict
, L. X.
, Louie
, S. G.
, and Cohen
, M. L.
, 1996, “Quantum Conductance of Carbon Nanotubes With Defects
,” Phys. Rev. B
0556-2805, 54
(4
), pp. 2600
–2606
.78.
Tamura
, R.
, and Tsukada
, M.
, 1997, “Condtance of Nanotube Junctions and Its Scaling Law
,” Phys. Rev. B
0556-2805, 55
(8
), pp. 4991
–4998
.79.
Tamura
, R.
, and Tsukada
, M.
, 1998, “Analysis of Quantum Conductance of Carbon Nanotube Junctions by the Effective-Mass Approximation
,” Phys. Rev. B
0556-2805, 58
(12
), pp. 8120
–8124
.80.
Anantram
, M. P.
, and Govindan
, T. R.
, 1998, “Conductance of Carbon Nanotubes With Disorder: A Numerical Study
,” Phys. Rev. B
0556-2805, 58
(8
), pp. 4882
–4887
.81.
Farajian
, A. A.
, Esfarjani
, K.
, and Kawazoe
, Y.
, 1999, “Nonlinear Coherent Transport Through Doped Nanotube Junctions
,” Phys. Rev. Lett.
0031-9007, 82
(25
), pp. 5084
–5087
.82.
Choi
, H. J.
, and Ihm
, J.
, 1999, “Ab Initio Pseudopotential Method for the Calculation of Conductance in Quantum Wires
,” Phys. Rev. B
0556-2805, 59
(3
), pp. 2267
–2275
.83.
Rochefort
, A.
, Lesage
, F.
, Salahub
, D. R.
, and Avouris
, P.
, 1999, “Electrical and Mechanical Properties of Distorted Carbon Nanotubes
,” Phys. Rev. B
0556-2805, 60
(19
), pp. 13824
–13830
.84.
Saito
, R.
, Fujita
, M.
, Dresselhaus
, G.
, and Dresselhaus
, M. S.
, 1992, “Electronic Structure of Chiral Graphene Tubules
,” Appl. Phys. Lett.
0003-6951, 60
(18
), pp. 2204
–2206
.85.
Hamada
, N.
, Sawada
, S. -I.
, and Oshiyama
, A.
, 1992, “New One-Dimensional Conductors: Graphitic Microtubules
,” Phys. Rev. Lett.
0031-9007, 68
(10
), pp. 1579
–1581
.86.
Mintmire
, J. W.
, Dunlop
, B. I.
, and White
, C. T.
, 1992, “Are Fullerene Tubules Metallic?
,” Phys. Rev. Lett.
0031-9007, 68
(5
), pp. 631
–634
.87.
Dresselhaus
, M. S.
, Dresselhaus
, G.
, Charlier
, J. C.
, and Hernandez
, E.
, 2004, “Electronic, Thermal and Mechanical Properties of Carbon Nanotubes
,” Philos. Trans. R. Soc. London, Ser. A
0962-8428, 362
, pp. 2065
–2098
.88.
Tang
, Z. K.
, Zhang
, L.
, Wang
, N.
, Zhang
, X. X.
, Wen
, G. H.
, Li
, G. D.
, Wang
, J. N.
, Chan
, C. T.
, and Sheng
, P.
, 2001, “Superconductivity in 4 Angstrom Single-Walled Carbon Nanotubes
,” Science
0036-8075, 292
, pp. 2462
–2465
.89.
Dubay
, O.
, Kresse
, G.
, and Kuzmany
, H.
, 2002, “First-Principle Calculations of Small Diameter Tubes
,” Phys. Rev. Lett.
0031-9007, 88
, p. 235506
.90.
Liu
, B. B.
, Sundqvist
, B.
, Li
, D. M.
, and Zou
, G. T.
, 2002, “Resistivity and Fractal Structure in Carbon Nanotube Networks
,” J. Phys.: Condens. Matter
0953-8984, 14
(44
), pp. 11125
–11129
.91.
Sánchez-Portal
, D.
, Artacho
, E.
, Soler
, J. M.
, Rubio
, A.
, and Ordejón
, P.
, 1999, “Ab Initio Structural, Elastic, and Vibrational Properties of Carbon Nanotubes
,” Phys. Rev. B
0556-2805, 59
(19
), pp. 12678
–12688
.92.
Odom
, T. W.
, Huang
, J. -L.
, Kim
, P.
, and Lieber
, C. M.
, 1998, “Atomic Structure and Electronic Properties of Single-Walled Carbon Nanotubes
,” Nature (London)
0028-0836, 391
(6662
), pp. 62
–64
.93.
Wilder
, J. W. G.
, Venema
, L. C.
, Rinzler
, A. G.
, Smalley
, R. E.
, and Dekker
, C.
, 1998, “Electronic Structure of Atomically Resolved Carbon Nanotubes
,” Nature (London)
0028-0836, 391
(6662
), pp. 59
–62
.94.
Kim
, G. T.
, Choi
, E. S.
, Kim
, D. C.
, Suh
, D. S.
, Park
, Y. W.
, Liu
, K.
, Duesberg
, G.
, and Roth
, S.
, 1998, “Magnetoresistance of an Entangled Single-Wall Carbon-Nanotube Network
,” Phys. Rev. B
0556-2805, 58
(24
), pp. 16064
–16069
.95.
Fischer
, J. E.
, Dai
, H.
, Thess
, A.
, Lee
, R.
, Hanjani
, N. M.
, Dehaas
, D. L.
, and Smalley
, R. E.
, 1997, “Metallic Resistivity in Crystalline Ropes of Single-Wall Carbon Nanotubes
,” Phys. Rev. B
0556-2805, 55
(8
), pp. R4921
–R4924
.96.
Bozhko
, A. D.
, Sklovsky
, D. E.
, Nalimova
, V. A.
, Rinzler
, A. G.
, Smalley
, R. E.
, and Fischer
, J. E.
, 1998, “Resistance vs. Pressure of Single-Wall Carbon Nanotubes
,” Appl. Phys. A: Mater. Sci. Process.
0947-8396, 67
(1
), pp. 75
–77
.97.
Ebbesen
, T. W.
, Lezec
, H. J.
, Hiura
, H.
, Bennett
, J. W.
, Ghaemie
, H. F.
, and Thio
, T.
, 1996, “Electrical Conductivity of Individual Carbon Nanotubes
,” Nature (London)
0028-0836, 382
(6586
), pp. 54
–56
.98.
Lee
, J. -O.
, Park
, C.
, Kim
, J. -J.
, Kim
, J.
, Park
, J. W.
, and Yoo
, K. -H.
, 2000, “Formation of Low Resistance Ohmic Contact Between Carbon Nanotubes and Metal Electrodes by a Rapid Thermal Annealing Method
,” J. Phys. D
0022-3727, 33
(16
), pp. 1953
–1956
.99.
Dai
, H.
, Wong
, E. W.
, and Lieber
, C. M.
, 1996, “Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes
,” Science
0036-8075, 272
(5261
), pp. 523
–526
.100.
Buongiorno Nardelli
, M.
, Fattebert
, J. -L.
, Orlikowski
, D.
, Roland
, C.
, Zhao
, Q.
, and Bernholc
, J.
, 2000, “Mechanical Properties, Defects and Electronic Behavior of Carbon Nanotubes
,” Carbon
0008-6223, 38
(11–12
), pp. 1703
–1711
.101.
Hsiou
, Y. -F.
, Chen
, C.
, Chan
, C. -H.
, Stobinski
, L.
, and Yang
, Y. -J.
, 2005, “Defect Effect on Electrical Transport of Multiwalled Carbon Nanotubes
,” Jpn. J. Appl. Phys., Part 1
0021-4922, 44
(6A
), pp. 4245
–4247
.102.
Suzuura
, H.
, 2006, “Conductance of Twisted Carbon Nanotubes
,” Physica E (Amsterdam)
1386-9477, 34
, pp. 674
–677
.103.
Tseng
, S. -H.
, Tai
, N. -H.
, Chang
, M. -T.
, and Chou
, L. -J.
, 2009, “Exploiting the Effect of Twisting on the Electrical Resistance of a Single-Walled Carbon Nanotube Rope to Trigger Ignition Using a 9V Battery
,” Carbon
0008-6223, 47
, pp. 3472
–3478
.104.
Svizhenko
, A.
, Mehrez
, H.
, Anantram
, M. P.
, and Maiti
, A.
, 2004, “Sensing Mechanical Deformation in Carbon Nanotubes by Electrical Response: A Computational Study
,” Proc. SPIE
0277-786X, 5593
, pp. 416
–428
.105.
Ruoff
, R. S.
, and Lorents
, D. C.
, 1995, “Mechanical and Thermal Properties of Carbon Nanotubes
,” Carbon
0008-6223, 33
(7
), pp. 925
–930
.106.
Berber
, S.
, Kwon
, Y. K.
, and Tomanek
, D.
, 2000, “Unusually High Thermal Conductivity of Carbon Nanotubes
,” Phys. Rev. Lett.
0031-9007, 84
, pp. 4613
–4616
.107.
Hone
, J.
, 2009, Carbon Nanotubes: Thermal Properties, Dekker Encyclopedia of Nanoscience and Nanotechnology
, Taylor & Francis
, London
, pp. 603
–610
.108.
Osman
, M. A.
, and Srivastava
, D.
, 2001, “Temperature Dependence of the Thermal Conductivity of Single-Wall Carbon Nanotubes
,” Nanotechnology
0957-4484, 12
, pp. 21
–24
.109.
Li
, D.
, 2002, “Thermal Transport in Individual Nanowires and Nanotubes
,” Ph.D. thesis, Department of Mechanical Engineering, University of California, Berkeley, CA.110.
Hone
, J.
, Whitney
, M.
, Piskoti
, C.
, and Zettl
, A.
, 1999, “Thermal Conductivity of Single-Walled Carbon Nanotubes
,” Phys. Rev. B
0556-2805, 59
, pp. R2514
–R2516
.111.
Hone
, J.
, Llaguno
, M. C.
, Nemes
, N. M.
, Johnson
, A. T.
, Fischer
, J. E.
, Walters
, D. A.
, Casavant
, M. J.
, Schmidt
, J.
, and Smalley
, R. E.
, 2000, “Electrical and Thermal Transport Properties of Magnetically Aligned Single Wall Carbon Nanotube Films
,” Appl. Phys. Lett.
0003-6951, 77
, pp. 666
–668
.112.
Small
, J. P.
, Shi
, L.
, and Kim
, P.
, 2003, “Mesoscopic Thermal and Thermoelectric Measurements of Individual Carbon Nanotubes
,” Solid State Commun.
0038-1098, 127
(2
), pp. 181
–186
.113.
Yi
, W.
, Lu
, L.
, Zhang
, D. L.
, Pan
, Z. W.
, and Xie
, S. S.
, 1999, “Linear Specific Heat of Carbon Nanotubes
,” Phys. Rev. B
0556-2805, 59
, pp. R9015
–R9018
.114.
Che
, J.
, Çağin
, T.
, and Goddard
, W. A.
, III, 2000, “Thermal Conductivity of Carbon Nanotubes
,” Nanotechnology
0957-4484, 11
, pp. 65
–69
.115.
Fan
, H.
, Zhang
, K.
, and Yuen
, M. M. F.
, 2007, “Effect of Defects on Thermal Performance of Carbon Nanotube Investigated by Molecular Dynamics Simulation
,” Eighth International Conference on Electronic Materials and Packaging
, pp. 792
–795
.116.
Yan
, X. H.
, Xiao
, Y.
, and Li
, Z. M.
, 2006, “Effects of Intertube Coupling and Tube Chirality on Thermal Transport of Carbon Nanotubes
,” J. Appl. Phys.
0021-8979, 99
, p. 124305
.117.
Troung
, V. -T.
, Tsang
, K. M. C.
, Keough
, S. J.
, and St John
, N. G.
, 2006, “Effect of Sonication on the Mechanical Properties of Poly (Vinyl Alcohol)/Carbon Nanotube Composites
,” Proc. SPIE
0277-786X, 6415
, p. 641503
.118.
Yang
, Z.
, Pu
, Y.
, Zhou
, L.
, Chen
, C.
, Li
, W.
, Xu
, L.
, Yi
, B.
, and Wang
, Y.
, 2007, “Facile Approach to Obtain Individual-Nanotube Dispersion at High Loading in Carbon Nanotubes/Polyimide Composites
,” Polym. Adv. Technol.
1042-7147, 18
, pp. 458
–462
.119.
Fagan
, J. A.
, Landi
, B. J.
, Mandelbaum
, I.
, Simpson
, J. R.
, Bajpai
, V.
, Bauer
, B. J.
, Migler
, K.
, Walker
, A. R. H.
, Reffaelle
, R.
, and Hobbie
, E. K.
, 2006, “Comparative Measures of Single-Wall Carbon Nanotube Dispersion
,” J. Phys. Chem. B
1089-5647, 110
, pp. 23801
–23805
.120.
Narh
, K. A.
, Jallo
, L.
, and Rhee
, K. Y.
, 2008, “The Effect of Carbon Nanotube Agglomeration on the Thermal and Mechanical Properties of Polyethylene Oxide
,” Polym. Compos.
0272-8397, 29
(7
), pp. 809
–817
.121.
Xie
, X. -L.
, Mai
, Y. -W.
, and Zhou
, X. -P.
, 2005, “Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review
,” Mater. Sci. Eng. R.
0927-796X, 49
, pp. 89
–112
.122.
Liu
, T.
, Xiao
, Z.
, Zhang
, C.
, and Wang
, B.
, 2008, “Preparative Ultracentrifuge Method for Characterization of Carbon Nanotube Dispersions
,” J. Phys. Chem. C
1932-7447, 112
, pp. 19193
–19202
.123.
Yoon
, D.
, Kang
, S. J.
, Choi
, J. B.
, Kim
, Y. J.
, and Baik
, S.
, 2007, “The Evaluation of Individual Dispersion of Single-Walled Carbon Nanotubes Using Absorption and Fluorescence Spectroscopic Techniques
,” J. Nanosci. Nanotechnol.
1533-4880, 7
(11
), pp. 3727
–3730
.124.
Bonavolontà
, C.
, Valentino
, M.
, Meola
, C.
, Carlomagno
, G. M.
, Volponi
, R.
, and Rosca
, I. D.
, 2009, “Non-Destructive Testing of a Carbon-Nanotube-Reinforced Composite Using HTS-SQUID and Electromagnetic Techniques
,” Supercond. Sci. Technol.
0953-2048, 22
, p. 095001
.125.
Hilding
, J.
, Grulke
, E. A.
, Zhang
, Z. G.
, and Lockwood
, F.
, 2003, “Dispersion of Carbon Nanotubes in Liquids
,” J. Dispersion Sci. Technol.
0193-2691, 24
(1
), pp. 1
–41
.126.
Fiedler
, B.
, Gojny
, F. H.
, Wichmann
, M. H. G.
, Nolte
, M. C. M.
, and Schulte
, K.
, 2006, “Fundamental Aspects of Nano-Reinforced Composites
,” Compos. Sci. Technol.
0266-3538, 66
, pp. 3115
–3125
.127.
Zaragoza-Contreras
, E. A.
, Lozano-Rodríguez
, E. D.
, Román-Aguirre
, M.
, Antunez-Flores
, W.
, Hernández-Escobar
, C. A.
, Flores-Gollardo
, S. G.
, and Aguilar-Elguezabal
, A.
, 2009, “Evidence of Multi-Walled Carbon Nanotube Fragmentation Induced by Sonication During Nanotube Encapsulation via Bulk-Suspension Polymerization
,” Micron
0968-4328, 40
, pp. 621
–627
.128.
Weisenberger
, M. C.
, Grulke
, E. A.
, Jacques
, D.
, Rantell
, T.
, and Andrews
, R.
, 2003, “Enhanced Mechanical Properties of Polyacrylonitrile/Multiwall Carbon Nanotube Composite Fibers
,” J. Nanosci. Nanotechnol.
1533-4880, 3
, pp, 535
–539
.129.
Kearns
, J. C.
, and Shambaugh
, R. L.
, 2002, “Polypropylene Fibers Reinforced With Carbon Nanotubes
,” J. Appl. Polym. Sci.
0021-8995, 86
, pp. 2079
–2084
.130.
Wichmann
, M. H. G.
, Sumfleth
, J.
, Fidler
, B.
, Gojny
, F. H.
, and Schulte
, K.
, 2006, “Multiwall Carbon Nanotube/Epoxy Composites Produced by a Masterbatch Process
,” Mech. Compos. Mater.
0191-5665, 42
(5
), pp. 395
–406
.131.
Bozlar
, M.
, He
, D.
, Bai
, J.
, Chalopin
, Y.
, Mingo
, N.
, and Volz
, S.
, 2009, “Carbon Nanotube Microarchitectures for Enhanced Thermal Conduction at Ultralow Mass Fraction in Polymer Composites
,” Adv. Mater.
0935-9648, 21
, pp. 1
–5
.132.
Panagiotou
, T.
, Bernard
, J. M.
, and Mesite
, S. V.
, 2008, “Deagglomeration and Dispersion of Carbon Nanotubes Using Microfluidizer High Shear Fluid Processors
,” Nano Science and Technology Institute (NSTI) Conference and Expo Proceedings
, Boston, June 1–5, Vol. 1
, pp. 39
–42
.133.
Seyhan
, A. T.
, Gojny
, F. H.
, Tanoğlu
, M.
, and Schulte
, K.
, 2007, “Critical Aspects Related to Processing of Carbon Nanotube/Unsaturated Thermoset Polyester Nanocomposites
,” Eur. Polym. J.
0014-3057, 43
, pp. 374
–379
.134.
Sumfleth
, J.
, Prehn
, K.
, Wichmann
, M. H. G.
, Wedekind
, S.
, and Schulte
, K.
, 2010, “A Comparative Study of the Electrical and Mechanical Properties of Epoxy Nanocomposites Reinforced by CVD- and Arc-Grown Multi-Wall Carbon Nanotubes
,” Compos. Sci. Technol.
0266-3538, 70
, pp. 173
–180
.135.
Lordi
, V.
, and Yao
, N.
, 2000, “Molecular Mechanics of Binding in Carbon-Nanotube-Polymer Composites
,” J. Mater. Res.
0884-2914, 15
, pp. 2770
–2779
.136.
Simmons
, T. J.
, Bult
, J.
, Hashim
, D. P.
, Linhardt
, R. J.
, and Ajayan
, P. M.
, 2009, “Noncovalent Functionalization as an Alternative to Oxidative Acid Treatment of Single Wall Carbon Nanotubes With Applications for Polymer Nanocomposites
,” ACS Nano
1936-0851, 3
(4
), pp. 865
–870
.137.
Chen
, J.
, Liu
, H.
, Weimer
, W. A.
, Halls
, M. D.
, Waldeck
, D. H.
, and Walker
, G. C.
, 2002, “Noncovalent Engineering of Carbon Nanotube Surfaces by Rigid, Functional Conjugated Polymers
,” J. Am. Chem. Soc.
0002-7863, 124
, pp. 9034
–9035
.138.
Sung
, J. H.
, Kim
, H. S.
, Jin
, H. J.
, Choi
, H. J.
, and Chin
, I. -J.
, 2004, “Nanofibrous Membranes Prepared by Multiwalled Carbon Nanotube/Poly(Methyl Methacrylate) Composites
,” Macromolecules
0024-9297, 37
, pp. 9899
–9902
.139.
Garg
, A.
, and Sinnott
, S. B.
, 1998, “Effect of Chemical Functionalization on the Mechanical Properties of Carbon Nanotubes
,” Chem. Phys. Lett.
0009-2614, 295
, pp. 273
–278
.140.
Balasubramanian
, K.
, and Burghard
, M.
, 2005, “Chemically Functionalized Carbon Nanotubes
,” Small
1613-6810, 1
(2
), pp. 180
–192
.141.
Sahoo
, N. G.
, Cheng
, H. K. F.
, Cai
, J.
, Li
, L.
, Chan
, S. H.
, Zhao
, J.
, and Yu
, S.
, 2009, “Improvement of Mechanical and Thermal Properties of Carbon Nanotube Composites Through Nanotube Functionalization and Processing Methods
,” Mater. Chem. Phys.
0254-0584, 117
, pp. 313
–320
.142.
Ajayan
, P. M.
, Stephan
, O.
, Colliex
, C.
, and Trauth
, D.
, 1994, “Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-Nanotube Composite
,” Science
0036-8075, 265
, pp. 1212
–1214
.143.
deHeer
, W. A.
, Bacsa
, W. S.
, Châtelain
, A.
, Gerfin
, T.
, Humphrey-Baker
, R.
, Forro
, L.
, and Ugarte
, D.
, 1995, “Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties
,” Science
0036-8075, 268
, pp. 845
–847
.144.
Haggenmueller
, R.
, Gommans
, H. H.
, Rinzler
, A. G.
, Fischer
, J. E.
, and Winey
, K. I.
, 2000, “Aligned Single-Wall Carbon Nanotubes in Composites by Melt Processing Methods
,” Chem. Phys. Lett.
0009-2614, 330
, pp. 219
–225
.145.
Perrot
, C.
, Piccione
, P. M.
, Zakri
, C.
, Gaillard
, P.
, and Poulin
, P.
, 2009, “Influence of the Spinning Conditions on the Structure and Properties of Polyamide 12/Carbon Nanotube Composite Fibers
,” J. Appl. Polym. Sci.
0021-8995, 114
, pp. 3515
–3523
.146.
Rangari
, V. K.
, Yousuf
, M.
, Jeelani
, S.
, Pulikkathara
, M. X.
, and Khabashesku
, V. N.
, 2008, “Alignment of Carbon Nanotubes and Reinforcing Effects in Nylon-6 Polymer Composite Fibers
,” Nanotechnology
0957-4484, 19
, p. 245703
.147.
Camponeschi
, E.
, Florkowski
, B.
, Vance
, R.
, Garrett
, G.
, Garmestani
, H.
, and Tannenbaum
, R.
, 2006, “Uniform Directional Alignment of Single-Walled Carbon Nanotubes in Viscous Polymer Flow
,” Langmuir
0743-7463, 22
, pp. 1858
–1862
.148.
Lanticse
, L. J.
, Tanabe
, Y.
, Matsui
, K.
, Kaburagi
, Y.
, Suda
, K.
, Hoteida
, M.
, Endo
, M.
, and Yasuda
, E.
, 2006, “Shear-Induced Preferential Alignment of Carbon Nanotubes Resulted in Anisotropic Electrical Conductivity of Polymer Composites
,” Carbon
0008-6223, 44
, pp. 3078
–3086
.149.
Yi
, W.
, and Yang
, Q.
, 2010, “Aligned Growth and Alignment Mechanism of Carbon Nanotubes by Hot Filament Chemical Vapor Deposition
,” Appl. Phys. A: Mater. Sci. Process.
0947-8396, 98
, pp. 659
–669
.150.
Benedict
, L. X.
, Louie
, S. G.
, and Cohen
, M. L.
, 1995, “Static Polarizabilities of Single-Wall Carbon Nanotubes
,” Phys. Rev. B
0556-2805, 52
(11
), pp. 8541
–8549
.151.
Martin
, C. A.
, Sandler
, J. K. W.
, Windle
, A. H.
, Schwarz
, M. -K.
, Bauhofer
, W.
, Schutle
, K.
, and Shaffer
, M. S. P.
, 2005, “Electric Field-Induced Aligned Multi-Wall Carbon Nanotube Networks in Epoxy Composites
,” Polymer
0032-3861, 46
, pp. 877
–886
.152.
Zhu
, Y. -F.
, Ma
, C.
, Zhang
, W.
, Zhang
, R. -P.
, Koratkar
, N.
, and Liang
, J.
, 2009, “Alignment of Multiwalled Carbon Nanotubes in Bulk Epoxy Composites via Electric Field
,” J. Appl. Phys.
0021-8979, 105
, p. 054319
.153.
Wang
, M. -W.
, 2009, “Alignment of Multiwall Carbon Nanotubes in Polymer Composites by Dielectrophoresis
,” Jpn. J. Appl. Phys.
0021-4922, 48
, p. 035002
.154.
Ma
, C.
, Zhang
, W.
, Zhu
, Y.
, Ji
, L.
, Zhang
, R.
, Koratkar
, N.
, and Liang
, J.
, 2008, “Alignment and Dispersion of Functionalized Carbon Nanotubes in Polymer Composites Induced by an Electric Field
,” Carbon
0008-6223, 46
, pp. 706
–710
.155.
Uddin
, N. M.
, Ko
, F.
, Xiong
, J.
, Farouk
, B.
, and Capaldi
, F.
, 2009, “Process, Structure, and Properties of Electrospun Carbon Nanotube-Reinforced Nanocomposite Yarns
,” Research Letters in Materials Science
, 2009
, p. 868917
.156.
Blond
, D.
, Walshe
, W.
, Young
, K.
, Blighe
, F. M.
, Khan
, U.
, Almecija
, D.
, Carpenter
, L.
, McCauley
, J.
, Blau
, W. J.
, and Coleman
, J. N.
, 2008, “Strong, Tough, Electrospun, Polymer-Nanotube Composite Membranes With Extremely Low Density
,” Adv. Funct. Mater.
1616-301X, 18
, pp. 2618
–2624
.157.
Dror
, Y.
, Salalha
, W.
, Khalfin
, R. L.
, Cohen
, Y.
, Yarin
, A. L.
, and Zussman
, E.
, 2003, “Carbon Nanotubes Embedded in Oriented Polymer Nanofibers by Electrospinning
,” Langmuir
0743-7463, 19
, pp. 7012
–7020
.158.
Ajiki
, H.
, and Ando
, T.
, 1993, “Magnetic Properties of Carbon Nanotubes
,” J. Phys. Soc. Jpn.
0031-9015, 62
, pp. 2470
–2480
.159.
Lu
, J. P.
, 1995, “Novel Magnetic Properties of Carbon Nanotubes
,” Phys. Rev. Lett.
0031-9007, 74
, pp. 1123
–1126
.160.
Ajiki
, H.
, and Ando
, T.
, 1995, “Magnetic Properties of Ensembles of Carbon Nanotubes
,” J. Phys. Soc. Jpn.
0031-9015, 64
, pp. 4382
–4391
.161.
Steinert
, B. W.
, and Dean
, D. R.
, 2009, “Magnetic Field Alignment and Electrical Properties of Solution Cast PET-Carbon Nanotube Composite Films
,” Polymer
0032-3861, 50
, pp. 898
–904
.162.
Yonemura
, H.
, Yamamoto
, Y.
, Yamada
, S.
, Fujiwara
, Y.
, and Tanimoto
, Y.
, 2008, “Magnetic Orientation of Single-Walled Carbon Nanotubes or Their Composites Using Polymer Wrapping
,” Sci. Technol. Adv. Mater.
1468-6996, 9
, p. 024213
.163.
Shaver
, J.
, Parra-Vasquez
, A. N. G.
, Hansel
, S.
, Portugall
, O.
, Mielke
, C. H.
, von Ortenberg
, M.
, Hauge
, R. H.
, Pasquali
, M.
, and Kono
, J.
, 2009, “Alignment Dynamics of Single-Walled Carbon Nanotubes in Pulsed Ultrahigh Magnetic Fields
,” ACS Nano
1936-0851, 3
, pp. 131
–138
.164.
Marquez
, F.
, Morant
, C.
, Sanz
, M. J.
, and Elizalde
, E.
, 2009, “Attachment of Magnetite Nanoparticles on Carbon Nanotube Bundles and Their Response to Magnetic Fields
,” J. Nanosci. Nanotechnol.
1533-4880, 9
(6
), pp. 3810
–3814
.165.
Correa-Duarte
, M. A.
, Grzelczak
, M.
, Salgueirino-Maceira
, V.
, Giersig
, M.
, Liz-Marzan
, L. M.
, Farle
, M.
, Sierazdki
, K.
, and Diaz
, R.
, 2005, “Alignment of Carbon Nanotubes Under Low Magnetic Fields Through Attachment of Magnetic Nanoparticles
,” J. Phys. Chem. B
1089-5647, 109
(41
), pp. 19060
–19063
.166.
Pichot
, V.
, Badaire
, S.
, Albouy
, P. A.
, Zakri
, P. A.
, Poulin
, P.
, and Launois
, P.
, 2006, “Structural and Mechanical Properties of Single-Wall Carbon Nanotube Fibers
,” Phys. Rev. B
0556-2805, 74
, p. 245416
.167.
Jin
, L.
, Bower
, C.
, and Zhou
, O.
, 1998, “Alignment of Carbon Nanotubes in a Polymer Matrix by Mechanical Stretching
,” Appl. Phys. Lett.
0003-6951, 73
(9
), pp. 1197
–1199
.168.
Launois
, P.
, Marucci
, A.
, Vigolo
, B.
, Bernier
, P.
, Derré
, A.
, and Poulin
, P.
, 2001, “Structural Characterization of Nanotube Fibers by X-Ray Scattering
,” J. Nanosci. Nanotechnol.
1533-4880, 1
(2
), pp. 125
–128
.169.
Sreekumar
, T. V.
, Liu
, T.
, Min
, B. G.
, Guo
, H.
, Kumar
, S.
, Hauge
, R. H.
, and Smalley
, R. E.
, 2004, “Polyacrylonitrile Single-Walled Carbon Nanotube Composite Fibers
,” Adv. Mater.
0935-9648, 16
, pp. 58
–61
.170.
Wood
, J. R.
, Zhao
, Q.
, and Wagner
, H. D.
, 2001, “Orientation of Carbon Nanotubes in Polymers and Its Detection by Raman Spectroscopy
,” Composites, Part A
1359-835X, 32
, pp. 391
–399
.171.
Liu
, P.
, Liu
, L.
, and Zhang
, Y.
, 2003, “Alignment Characterization of Single-Wall Carbon Nanotubes by Raman Scattering
,” Phys. Lett. A
0375-9601, 313
, pp. 302
–306
.172.
Hwang
, J.
, Gommans
, H. H.
, Ugawa
, A.
, Tashiro
, H.
, Haggenmueller
, R.
, Winey
, K. I.
, Fischer
, J. E.
, Tanner
, D. B.
, and Rinzler
, A. G.
, 2000, “Polarized Spectroscopy of Aligned Single-Wall Carbon Nanotubes
,” Phys. Rev. B
0556-2805, 62
(20
), pp. R13310
–R13313
.173.
Arco
, L. G.-D.
, Lei
, B.
, Cronin
, S.
, and Zhou
, C.
, 2008, “Resonant Micro-Raman Spectroscopy of Aligned Single-Walled Carbon Nanotubes on A-Plane Sapphire
,” Appl. Phys. Lett.
0003-6951, 93
, p. 123112
.174.
Abbasi
, S.
, Carreau
, P. J.
, and Derdouri
, A.
, 2010, “Flow Induced Orientation of Multiwalled Carbon Nanotubes in Polycarbonate Nanocomposites: Rheology, Conductivity and Mechanical Properties
,” Polymer
0032-3861, 51
, pp. 922
–935
.175.
Rudd
, R. E.
, 2001, “The Atomic Limit of Finite Element Modeling in MEMS: Coupling of Length Scales
,” Analog Integr. Circuits Signal Process.
0925-1030, 29
, pp. 17
–26
.176.
Abraham
, F. F.
, Walkup
, R.
, Gao
, H.
, Duchaineau
, M.
, De La Rubia
, T. D.
, and Seager
, M.
, 2002, “Simulating Materials Failure by Using Up to One Billion Atoms and the World’s Fastest Computer: Brittle Fracture
,” Proc. Natl. Acad. Sci. U.S.A.
0027-8424, 99
, pp. 5777
–5782
.177.
Frankland
, S. J. V.
, Caglar
, A.
, Brenner
, D. W.
, and Griebel
, M.
, 2002, “Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube-Polymer Interfaces
,” J. Phys. Chem. B
1089-5647, 106
, pp. 3046
–3048
.178.
Gou
, J.
, Minaie
, B.
, Wang
, B.
, Liang
, Z.
, and Zhang
, C.
, 2004, “Computational and Experimental Study of Interfacial Bonding of Single-Walled Nanotube Reinforced Composites
,” Comput. Mater. Sci.
0927-0256, 31
, pp. 225
–236
.179.
Gou
, J. H.
, Liang
, Z. Y.
, Zhang
, C.
, and Wang
, B.
, 2005, “Computational Analysis of Effect of Single-Walled Carbon Nanotube Rope on Molecular Interaction and Load Transfer of Nanocomposites
,” Composites, Part B
1359-8368, 36
, pp. 524
–533
.180.
Zheng
, Q.
, Xia
, D.
, Xue
, Q.
, Yan
, K.
, Gao
, X.
, and Li
, Q.
, 2009, “Computational Analysis of Effect of Modification on the Interfacial Characteristics of Carbon Nanotube-Polyethylene Composite System
,” Appl. Surf. Sci.
0169-4332, 255
, pp. 3534
–3543
.181.
Wei
, C.
, 2006, “Adhesion and Reinforcement in Carbon Nanotube Polymer Composites
,” Appl. Phys. Lett.
0003-6951, 88
, p. 093108
.182.
Barber
, A. H.
, Cohen
, S. R.
, and Wagner
, H. D.
, 2003, “Measurement of Carbon Nanotube-Polymer Interfacial Strength
,” Appl. Phys. Lett.
0003-6951, 82
(23
), pp. 4140
–4142
.183.
Xiao
, T.
, and Liao
, K.
, 2004, “A Nonlinear Pullout Model for Unidirectional Carbon Nanotube-Reinforced Composites
,” Composites, Part B
1359-8368, 35
, pp. 211
–217
.184.
Frankland
, S. J. V.
, Harik
, V. M.
, Odegard
, G. M.
, Brenner
, D. W.
, and Gates
, T. S.
, 2003, “The Stress-Strain Behavior of Polymer-Nanotube Composites From Molecular Dynamics Simulation
,” Compos. Sci. Technol.
0266-3538, 63
, pp. 1655
–1661
.185.
Griebel
, M.
, and Hamaekers
, J.
, 2004, “Molecular Dynamics Simulations of the Elastic Moduli of Polymer-Carbon Nanotube Composites
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 193
, pp. 1773
–1788
.186.
Han
, Y.
, and Elliot
, J.
, 2007, “Molecular Dynamics Simulations of the Elastic Properties of Polymer/Carbon Nanotube Composites
,” Comput. Mater. Sci.
0927-0256, 39
, pp. 315
–323
.187.
Zheng
, Q.
, Xue
, Q.
, Yan
, K.
, Gao
, X.
, Li
, Q.
, and Hao
, L.
, 2008, “Influence of Chirality on the Interfacial Bonding Characteristics of Carbon Nanotube Polymer Composites
,” J. Appl. Phys.
0021-8979, 103
, p. 044302
.188.
Chowdhury
, S. C.
, and Okabe
, T.
, 2007, “Computer Simulation of Carbon Nanotube Pull-Out From Polymer by the Molecular Dynamics Method
,” Composites, Part A
1359-835X, 38
, pp. 747
–754
.189.
Chen
, H.
, Xue
, Q.
, Zheng
, Q.
, Xie
, J.
, and Yan
, K.
, 2008, “Influence of Nanotube Chirality, Temperature, and Chemical Modification on the Interfacial Bonding Between Carbon Nanotubes and Polyphenylacetylene
,” J. Phys. Chem. C
1932-7447, 112
, pp. 16514
–16520
.190.
Liu
, J.
, Wang
, X. -L.
, Zhao
, L.
, Zhang
, G.
, Lu
, Z. -Y.
, and Li
, Z. -S.
, 2008, “The Absorption and Diffusion of Polyethylene Chains on the Carbon Nanotube: The Molecular Dynamics Study
,” J. Polym. Sci., Part B: Polym. Phys.
0887-6266, 46
, pp. 272
–280
.191.
Al-Haik
, M.
, and Hussaini
, M. Y.
, 2005, “Adhesion Energy in Carbon Nanotube-Polyethylene Composite: Effect of Chirality
,” J. Appl. Phys.
0021-8979, 97
, p. 074306
.192.
Chang
, T.
, Geng
, J.
, and Guo
, X.
, 2006, “Prediction of Chirality- and Size-Dependent Elastic Properties of Single-Walled Carbon Nanotubes via a Molecular Mechanics Model
,” Proc. R. Soc. London, Ser. A
0950-1207, 462
, pp. 2523
–2540
.193.
Fisher
, F. T.
, Bradshaw
, R. D.
, and Brinson
, L. C.
, 2002, “Effects of Nanotube Waviness on the Modulus of Nanotube-Reinforced Polymers
,” Appl. Phys. Lett.
0003-6951, 80
(24
), pp. 4647
–4649
.194.
Fisher
, F. T.
, Bradshaw
, R. D.
, and Brinson
, L. C.
, 2003, “Fiber Waviness in Nanotube-Reinforced Polymer Composites—I: Modulus Predictions Using Effective Nanotube Properties
,” Compos. Sci. Technol.
0266-3538, 63
, pp. 1689
–1703
.195.
Bradshaw
, R. D.
, Fischer
, F. T.
, and Brinson
, L. C.
, 2003, “Fiber Waviness in Nanotube-Reinforced Polymer Composites—II: Modeling via Numerical Approximation of the Dilute Strain Concentration Tensor
,” Compos. Sci. Technol.
0266-3538, 63
, pp. 1705
–1722
.196.
Chen
, X.
, Beyerlein
, I. J.
, and Brinson
, L. C.
, 2009, “Curved-Fiber Pull-Out Model for Nanocomposites. Part 1: Bonded Stage Formulation
,” Mech. Mater.
0167-6636, 41
, pp. 279
–292
.197.
Chen
, X.
, Beyerlein
, I. J.
, and Brinson
, L. C.
, 2009, “Curved-Fiber Pull-Out Model for Nanocomposites. Part 2: Interfacial Debonding and Sliding
,” Mech. Mater.
0167-6636, 41
, pp. 293
–307
.198.
Pantano
, A.
, Modica
, G.
, and Cappello
, F.
, 2008, “Multiwalled Carbon Nanotube Reinforced Polymer Composites
,” Mater. Sci. Eng., A
0921-5093, 486
, pp. 222
–227
.199.
Thostenson
, E. T.
, and Chou
, T. -W.
, 2003, “On the Elastic Properties of Carbon Nanotube-Based Composites: Modeling and Characterization
,” J. Phys. D
0022-3727, 36
, pp. 573
–582
.200.
Lu
, W. B.
, Wu
, J.
, Jiang
, L. Y.
, Huang
, Y.
, Hwang
, K. C.
, and Liu
, B.
, 2007, “A Cohesive Law for Multi-Wall Carbon Nanotubes
,” Philos. Mag.
1478-6435, 87
(14&15
), pp. 2221
–2232
.201.
Jiang
, L. Y.
, Huang
, Y.
, Jiang
, H.
, Ravichandran
, G.
, Gao
, H.
, Hwang
, K. C.
, and Liu
, B.
, 2006, “A Cohesive Law for Carbon Nanotube/Polymer Interfaces Based on the Van Der Waals Force
,” J. Mech. Phys. Solids
0022-5096, 54
, pp. 2436
–2452
.202.
Tan
, H.
, Jiang
, L. Y.
, Huang
, Y.
, Liu
, B.
, and Hwang
, K. C.
, 2007, “The Effect of Van Der Waals-Based Interface Cohesive Law on Carbon Nanotube-Reinforced Composite Materials
,” Compos. Sci. Technol.
0266-3538, 67
, pp. 2941
–2946
.203.
Chen
, X. L.
, and Liu
, Y. J.
, 2004, “Square Representative Volume Elements for Evaluating the Effective Material Properties of Carbon Nanotube-Based Composites
,” Comput. Mater. Sci.
0927-0256, 29
, pp. 1
–11
.204.
Liu
, Y. J.
, and Chen
, X. L.
, 2003, “Evaluations of the Effective Material Properties of Carbon Nanotube-Based Composites Using a Nanoscale Representative Volume Element
,” Mech. Mater.
0167-6636, 35
, pp. 69
–81
.205.
Lusti
, H. R.
, and Gusev
, A. A.
, 2004, “Finite Element Predictions for the Thermoelastic Properties of Nanotube Reinforced Polymers
,” Modell. Simul. Mater. Sci. Eng.
0965-0393, 12
, pp. S107
–S119
.206.
Selmi
, A.
, Friebel
, C.
, Doghri
, I.
, and Hassis
, H.
, 2007, “Prediction of the Elastic Properties of Single Walled Carbon Nanotube Reinforced Polymers: A Comparative Study of Several Micromechanical Models
,” Compos. Sci. Technol.
0266-3538, 67
, pp. 2071
–2084
.207.
Tadmor
, E. B.
, Ortiz
, M.
, and Phillips
, R.
, 1996, “Quasicontinuum Analysis of Defects in Solids
,” Philos. Mag. A
0141-8610, 73
, pp. 1529
–1563
.208.
Liu
, B.
, Huang
, Y.
, Jiang
, H.
, Qu
, S.
, and Hwang
, K. C.
, 2004, “The Atomic-Scale Finite Element Method
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 193
, pp. 1849
–1864
.209.
Wagner
, G. J.
, and Liu
, W. K.
, 2003, “Coupling of Atomistic and Continuum Simulations Using a Bridging Scale Decomposition
,” J. Comput. Phys.
0021-9991, 190
, pp. 249
–274
.210.
Shilkrot
, L. E.
, Curtin
, W. A.
, and Miller
, R. E.
, 2002, “A Coupled Atomistic/Continuum Model of Defects in Solids
,” J. Mech. Phys. Solids
0022-5096, 50
, pp. 2085
–2106
.211.
Broughton
, J. Q.
, Abraham
, F. F.
, Bernstein
, N.
, and Kaxiras
, E.
, 1999, “Concurrent Coupling of Length Scales: Methodology and Application
,” Phys. Rev. B
0556-2805, 60
(4
), pp. 2391
–2403
.212.
Wernik
, J. M.
, and Meguid
, S. A.
, 2009, “Coupling Atomistics and Continuum in Solids: Status, Prospects, and Challenges
,” Int. J. Mech. Mater. Des.
, 5
(1
), pp. 79
–110
.213.
Curtin
, W. A.
, and Miller
, R. E.
, 2003, “Atomistic/Continuum Coupling in Computational Materials Science
,” Modell. Simul. Mater. Sci. Eng.
0965-0393, 11
, pp. R33
–R68
.214.
Vvedensky
, D. D.
, 2004, “Multiscale Modeling of Nanostructures
,” J. Phys.: Condens. Matter
0953-8984, 16
, pp. R1537
–R1576
.215.
Namilae
, S.
, and Chandra
, N.
, 2005, “Multiscale Model to Study the Effect of Interfaces in Carbon Nanotube-Based Composites
,” ASME J. Eng. Mater. Technol.
0094-4289, 127
, pp. 222
–232
.216.
Odegard
, G. M.
, Gates
, T. S.
, Wise
, K. E.
, Park
, C.
, and Siochi
, E. J.
, 2003, “Constitutive Modeling of Nanotube-Reinforced Polymer Composites
,” Compos. Sci. Technol.
0266-3538, 63
, pp. 1671
–1687
.217.
Odegard
, G. M.
, Frankland
, S. J. V.
, and Gates
, T. S.
, 2005, “Effect of Nanotube Functionalization on the Elastic Properties of Polyethylene Nanotube Composites
,” AIAA J.
0001-1452, 43
(8
), pp. 1828
–1835
.218.
Spanos
, P. D.
, and Kontsos
, A.
, 2008, “A Multiscale Monte Carlo Finite Element Method for Determining Mechanical Properties of Polymer Nanocomposites
,” Probab. Eng. Mech.
0266-8920, 23
, pp. 456
–470
.219.
Shi
, D. -L.
, Feng
, X. -Q.
, Jiang
, H.
, Huang
, Y. Y.
, and Hwang
, K. -C.
, 2005, “Multiscale Analysis of Fracture of Carbon Nanotubes Embedded in Composites
,” Int. J. Fract.
0376-9429, 134
, pp. 369
–386
.220.
Li
, C.
, and Chou
, T. W.
, 2006, “Multiscale Modeling of Compressive Behavior of Carbon Nanotube/Polymer Composites
,” Compos. Sci. Technol.
0266-3538, 66
, pp. 2409
–2414
.221.
Gao
, X. -L.
, and Li
, K.
, 2005, “A Shear-Lag Model for Carbon Nanotube-Reinforced Polymer Composites
,” Int. J. Solids Struct.
0020-7683, 42
, pp. 1649
–1667
.222.
Hu
, N.
, Fukunaga
, H.
, Lu
, C.
, Kameyama
, M.
, and Yan
, B.
, 2005, “Predicition of Elastic Properties of Carbon Nanotube Reinforced Composites
,” Proc. R. Soc. London, Ser. A
0950-1207, 461
, pp. 1685
–1710
.223.
Tserpes
, K. I.
, Papanikos
, P.
, Labeas
, G.
, and Pantelakis
, Sp. G.
, 2008, “Multi-Scale Modeling of Tensile Behavior of Carbon Nanotube-Reinforced Composites
,” Theor. Appl. Fract. Mech.
0167-8442, 49
, pp. 51
–60
.224.
Liu
, T. X.
, Phang
, I. Y.
, Shen
, L.
, Chow
, S. Y.
, and Zhang
, W. D.
, 2004, “Morphology and Mechanical Properties of Multiwalled Carbon Nanotubes Reinforced Nylon-6 Composites
,” Macromolecules
0024-9297, 37
, pp. 7214
–7222
.225.
Liu
, H.
, Wang
, X.
, Fang
, P.
, Wang
, S.
, Qi
, X.
, Pan
, C.
, Xie
, G.
, and Liew
, K. M.
, 2010, “Functionalization of Multi-Walled Carbon Nanotubes Grafted With Self-Generated Functional Groups and Their Polyamide 6 Composites
,” Carbon
0008-6223, 48
, pp. 721
–729
.226.
Gojny
, F. H.
, Wichmann
, M. H. G.
, Fiedler
, B.
, and Schulte
, K.
, 2005, “Influence of Different Carbon Nanotubes on the Mechanical Properties of Epoxy Matrix Composites—A Comparative Study
,” Compos. Sci. Technol.
0266-3538, 65
, pp. 2300
–2313
.227.
Ji
, L.
, Stevens
, M. M.
, Zhu
, Y.
, Gong
, Q.
, Wu
, J.
, and Liang
, J.
, 2009, “Preparation and Properties of Multi-Walled Carbon Nanotube/Carbon/Polystyrene Composites
,” Carbon
0008-6223, 47
, pp. 2733
–2741
.228.
Guo
, P.
, Song
, H.
, and Chen
, X.
, 2009, “Interfacial Properties and Microstucture of Multiwalled Carbon Nanotubes/Epoxy Composites
,” Mater. Sci. Eng., A
0921-5093, 517
, pp. 17
–23
.229.
Prashantha
, K.
, Soulestin
, J.
, Lacrampe
, M. F.
, Krawczak
, P.
, Dupin
, G.
, and Claes
, M.
, 2009, “Masterbatch-Based Multi-Walled Carbon Nanotube Filled Polypropylene Nanocomposites: Assessment of Rheological and Mechanical Properties
,” Compos. Sci. Technol.
0266-3538, 69
, pp. 1756
–1763
.230.
Yoo
, H. J.
, Jung
, Y. C.
, and Cho
, J. W.
, 2008, “Effect of Interaction Between Poly(Ethylene Terephthalate) and Carbon Nanotubes on the Morphology and Properties of Their Nanocomposites
,” J. Polym. Sci., Part B: Polym. Phys.
0887-6266, 46
, pp. 900
–910
.231.
Chang
, T. E.
, Jensen
, L. R.
, Kisliuk
, A.
, Pipes
, R. B.
, Pyrz
, R.
, and Sokolov
, A. P.
, 2005, “Microscopic Mechanism of Reinforcement in Single-Wall Carbon Nanotube/Polypropylene Nanocomposite
,” Polymer
0032-3861, 46
, pp. 439
–444
.232.
Yuan
, J. -M.
, Fan
, Z. -F.
, Chen
, X. -H.
, Wu
, Z. -J.
, and He
, L. -P.
, 2009, “Preparation of Polystyrene-Multiwalled Carbon Nanotube Composites With Individual-Dispersed Nanotubes and Strong Interfacial Adhesion
,” Polymer
0032-3861, 50
, pp. 3285
–3291
.233.
Kawashita
, L. F.
, Kinloch
, A. J.
, Moore
, D. R.
, and Williams
, J. G.
, 2008, “The Influence of Bond Line Thickness and Peel Arm Thickness on Adhesive Fracture Toughness of Rubber Toughened Epoxy-Aluminium Alloy Laminates
,” Int. J. Adhes. Adhes.
0143-7496, 28
, pp. 199
–210
.234.
Takemura
, K.
, 2007, “Fracture Toughness of Carbon Fiber Reinforced Composites With Rubber Modification
,” Key Eng. Mater.
1013-9826, 334–335
, pp. 509
–512
.235.
Petrie
, E. M.
, 2006, Handbook of Adhesives and Sealants
, 2nd ed., McGraw-Hill Professional
, New York
.236.
Grady
, B. P.
, Paul
, A.
, Peters
, J. E.
, and Ford
, W. T.
, 2009, “Glass Transition Behaviour of Single-Walled Carbon Nanotube–Polystyrene Composites
,” Macromolecules
0024-9297, 42
(16
), pp. 6152
–6158
.237.
Lachman
, N.
, and Wagner
, H. D.
, 2009, “Correlation Between Interfacial Molecular Structure and Mechanics in CNT/Epoxy Nano-Composites
,” Composites, Part A
1359-835X, 41
, pp. 1093
–1098
.238.
Ganguli
, S.
, Bhuyan
, M.
, Allie
, L.
, and Aglan
, H.
, 2005, “Effect of a Multi-Walled Carbon Nanotube Reinforcement on the Fracture Behaviour of a Tetrafunctional Epoxy
,” J. Mater. Sci.
0022-2461, 40
, pp. 3593
–3595
.239.
Seyhan
, A. T.
, Tanoglu
, M.
, and Schulte
, K.
, 2009, “Tensile Mechanical Behavior and Fracture Toughness of MWCNT and DWCNT Modified Vinyl-Ester/Polyester Hybrid Nanocomposites Produced by 3-Roll Milling
,” Mater. Sci. Eng., A
0921-5093, 523
, pp. 85
–92
.240.
Yu
, N.
, Zhang
, Z. H.
, and He
, S. Y.
, 2008, “Fracture Toughness and Fatigue Life of MWCNT/Epoxy Composites
,” Mater. Sci. Eng., A
0921-5093, 494
, pp. 380
–384
.241.
Garg
, A. C.
, and Mai
, Y. W.
, 1988, “Failure Mechanisms in Toughened Epoxy Resins—A Review
,” Compos. Sci. Technol.
0266-3538, 31
, pp. 179
–223
.242.
Huang
, Y.
, and Kinloch
, A. J.
, 1992, “Modelling of the Toughening Mechanisms in Rubber-Modified Epoxy Polymers, Part I: Finite Element Analysis Studies
,” J. Mater. Sci.
0022-2461, 27
, pp. 2753
–2762
.243.
Ritchie
, R. O.
, 1999, “Mechanisms of Fatigue-Crack Propagation in Ductile and Brittle Solids
,” Int. J. Fract.
0376-9429, 100
, pp. 55
–83
.244.
Qian
, D.
, Dickey
, E. C.
, Andrews
, R.
, and Rantell
, T.
, 2000, “Load-Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites
,” Appl. Phys. Lett.
0003-6951, 76
, pp. 2868
–2870
.245.
Cooper
, C. A.
, Cohen
, S. R.
, Barber
, A. H.
, and Wagner
, H. D.
, 2002, “Detachment of Nanotubes From a Polymer Matrix
,” Appl. Phys. Lett.
0003-6951, 81
(20
), pp. 3873
–3875
.246.
Xu
, X. J.
, Thwe
, M. M.
, Shearwood
, C.
, and Liao
, K.
, 2002, “Mechanical Properties and Interfacial Characteristics of Carbon Nanotube Reinforced Epoxy Thin Films
,” Appl. Phys. Lett.
0003-6951, 81
(15
), pp. 2833
–2835
.247.
Wagner
, H. D.
, Lourie
, O.
, Feldman
, Y.
, and Tenne
, R.
, 1998, “Stress-Induced Fragmentation of Multiwall Carbon Nanotubes in a Polymer Matrix
,” Appl. Phys. Lett.
0003-6951, 72
(2
), pp. 188
–190
.248.
Watts
, P. C. P.
, and Hsu
, W. K.
, 2003, “Behaviours of Embedded Carbon Nanotubes During Film Cracking
,” Nanotechnology
0957-4484, 14
, pp. L7
–L10
.249.
Zhang
, W.
, Picu
, R. C.
, and Koratkar
, N.
, 2007, “Suppression of Fatigue Crack Growth in Carbon Nanotube Composites
,” Appl. Phys. Lett.
0003-6951, 91
, p. 193109
.250.
Thostenson
, E. T.
, and Chou
, T. -W.
, 2006, “Processing-Structure-Multi-Functional Property Relationship in Carbon Nanotube/Epoxy Composites
,” Carbon
0008-6223, 44
, pp. 3022
–3029
.251.
Wichmann
, M. H. G.
, Schulte
, K.
, and Wagner
, H. D.
, 2008, “On Nanocomposite Toughness
,” Compos. Sci. Technol.
0266-3538, 68
, pp. 329
–331
.252.
Blanco
, J.
, Garcia
, E. J.
, Guzman de Villoria
, R.
, and Wardle
, B. L.
, 2009, “Limiting Mechanisms of Mode I Interlaminar Toughening of Composites Reinforced With Aligned Carbon Nanotubes
,” J. Compos. Mater.
0021-9983, 43
(8
), pp. 825
–841
.253.
Seshadri
, M.
, and Saigal
, S.
, 2007, “Crack Bridging in Polymer Nanocomposites
,” J. Eng. Mech.
0733-9399, 133
, pp. 911
–918
.254.
Ma
, C. -C. M.
, Huang
, Y. -L.
, Kuan
, H. -C.
, and Chiu
, Y. -S.
, 2005, “Preparation and Electromagnetic Shielding Characteristics of Novel Carbon-Nanotube/Siloxane/Poly(Urea Urethane) Nanocomposites
,” J. Polym. Sci., Part B: Polym. Phys.
0887-6266, 43
, pp. 345
–358
.255.
Park
, J. G.
, Louis
, J.
, Cheng
, Q.
, Bao
, J.
, Smithyman
, J.
, Liang
, R.
, Wang
, B.
, Zhang
, C.
, Brooks
, J. S.
, Kramer
, L.
, Fanchasis
, P.
, and Dorough
, D.
, 2009, “Electromagnetic Interference Shielding Properties of Carbon Nanotube Buckypaper Composites
,” Nanotechnology
0957-4484, 20
, p. 415702
.256.
Baughman
, R. H.
, Zakhidov
, A. A.
, and de Heer
, W. A.
, 2002, “Carbon Nanotubes—The Route Toward Applications
,” Science
0036-8075, 297
, pp. 787
–792
.257.
Lu
, C.
, and Mai
, Y. -W.
, 2008, “Anomalous Electrical Conductivity and Percolation in Carbon Nanotube Composites
,” J. Mater. Sci.
0022-2461, 43
, pp. 6012
–6015
.258.
Stauffer
, D.
, 1984, Introduction to Percolation Theory
, Taylor & Francis
, London
.259.
Kovacs
, J. Z.
, Velagala
, B. S.
, Schulte
, K.
, and Bauhofer
, W.
, 2007, “Two Percolating Thresholds in Carbon Nanotube Epoxy Composites
,” Compos. Sci. Technol.
0266-3538, 67
, pp. 922
–928
.260.
Hu
, N.
, Masuda
, Z.
, and Fukunaga
, H.
, 2007, “Prediction of Electrical Conductivity of Polymer Filled by Carbon Nanotubes
,” Proceedings of the 16th International Conference on Composite Materials
, Kyoto, Japan.261.
Li
, J.
, Ma
, P. C.
, Chou
, W. S.
, To
, C. K.
, Tang
, B. Z.
, and Kim
, J. K.
, 2007, “Correlations Between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes
,” Adv. Funct. Mater.
1616-301X, 17
, pp. 3207
–3215
.262.
Martin
, C. A.
, Sandler
, J. K. W.
, Shaffer
, M. S. P.
, Schwarz
, M. K.
, Bauhofer
, W.
, Schulte
, K.
, and Windle
, A. H.
, 2004, “Formation of Percolating Networks in Multi-Wall Carbon-Nanotube–Epoxy Composites
,” Compos. Sci. Technol.
0266-3538, 64
(15
), pp. 2309
–2316
.263.
Bhatia
, R.
, Prasad
, V.
, and Reghu
, M.
, 2009, “Electrical Percolation Studies of Polystyrene-Multi Wall Carbon Nanotubes Composites
,” AIP Conf. Proc.
0094-243X, 1147
, pp. 402
–408
.264.
Zhao
, D.
, Lei
, Q.
, Qin
, C.
, and Bai
, X.
, 2006, “Melt Process and Performance of Multi-Walled Carbon Nanotubes Reinforced LDPE Composites
,” Pigment Resin Technol.
, 35
(6
), pp. 341
–345
.265.
Bauhofer
, W.
, and Kovacs
, J. Z.
, 2009, “A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites
,” Compos. Sci. Technol.
0266-3538, 69
, pp. 1486
–1498
.266.
Bai
, J. B.
, and Allaoui
, A.
, 2003, “Effect of the Length and the Aggregate Size of MWCNTs on the Improvement Efficiency of the Mechanical and Electrical Properties of Nanocomposites—Experimental Investigation
,” Composites, Part A
1359-835X, 34
(8
), pp. 689
–694
.267.
Foygel
, M.
, Morris
, R. D.
, Anez
, D.
, French
, S.
, and Sobolev
, V. L.
, 2005, “Theoretical and Computational Studies of Carbon Nanotube Composites and Suspensions: Electrical and Thermal Conductivity
,” Phys. Rev. B
0556-2805, 71
, p. 104201
.268.
Deng
, F.
, and Zheng
, Q. -S.
, 2008, “An Analytical Model of Effective Electrical Conductivity of Carbon Nanotube Composites
,” Appl. Phys. Lett.
0003-6951, 92
, p. 071902
.269.
Balberg
, I.
, Anderson
, C. H.
, Alexander
, S.
, and Wagner
, N.
, 1984, “Excluded Volume and Its Relation to the Onset of Percolation
,” Phys. Rev. B
0556-2805, 30
(7
), pp. 3933
–3943
.270.
Hu
, N.
, Masuda
, Z.
, Yan
, C.
, Yamamoto
, G.
, Fukunaga
, H.
, and Hashida
, T.
, 2008, “The Electrical Properties of Polymer Nanocomposites With Carbon Nanotube Fillers
,” Nanotechnology
0957-4484, 19
, p. 215701
.271.
Kovacs
, J. Z.
, Mandjarov
, R. E.
, Blisnjuk
, T.
, Prehn
, K.
, Sussiek
, M.
, Muller
, J.
, Schulte
, K.
, and Bauhofer
, W.
, 2009, “On the Influence of Nanotube Properties, Processing Conditions and Shear Forces on the Electrical Conductivity of Carbon Nanotube Epoxy Composites
,” Nanotechnology
0957-4484, 20
, p. 155703
.272.
Bose
, S.
, Bhattacharyya
, A. R.
, Bondre
, A. P.
, Kulkarni
, A. R.
, and Pötschke
, P.
, 2008, “Rheology, Electrical Conductivity, and the Phase Behavior of Cocontinuous PA6/ABS Blends With MWNT: Correlating the Aspect Ratio of MWNT With the Percolation Threshold
,” J. Polym. Sci., Part B: Polym. Phys.
0887-6266, 46
, pp. 1619
–1631
.273.
Valentini
, L.
, Armentano
, I.
, Puglia
, D.
, and Kenny
, J. M.
, 2004, “Dynamics of Amine Functionalized Nanotubes/Epoxy Composites by Dielectric Relaxation Spectroscopy
,” Carbon
0008-6223, 42
, pp. 323
–329
.274.
Tamburri
, E.
, Orlanducci
, S.
, Terranova
, M. L.
, Valentini
, F.
, Palleschi
, G.
, Curulli
, A.
, Brunetti
, F.
, Passeri
, D.
, Alippi
, A.
, and Rossi
, M.
, 2005, “Modulation of Electrical Properties in Single-Walled Carbon Nanotube/Conducting Polymer Composites
,” Carbon
0008-6223, 43
, pp. 1213
–1221
.275.
Ramasubramaniam
, R.
, Chen
, J.
, and Liu
, H.
, 2003, “Homogeneous Carbon Nanotube/Polymer Composites for Electrical Applications
,” Appl. Phys. Lett.
0003-6951, 83
(14
), pp. 2928
–2930
.276.
Hobbie
, E. K.
, Obrzut
, J.
, Kharchenko
, S. B.
, and Grulke
, E. A.
, 2006, “Charge Transport in Melt-Dispersed Carbon Nanotubes
,” J. Chem. Phys.
0021-9606, 125
, p. 044712
.277.
Du
, F.
, Fischer
, J. E.
, and Winey
, K. I.
, 2005, “Effect of Nanotube Alignment on Percolation Conductivity in Carbon Nanotube/Polymer Composites
,” Phys. Rev. B
0556-2805, 72
(12
), p. 121404
.278.
Behnam
, A.
, Guo
, J.
, and Ural
, A.
, 2007, “Effects of Nanotube Alignment and Measurement Direction on Percolation Resistivity in Single-Walled Carbon Nanotube Films
,” J. Appl. Phys.
0021-8979, 102
, p. 044313
.279.
White
, S. A.
, DiDonna
, B. A.
, Mu
, M.
, Lubensky
, T. C.
, and Winey
, K. I.
, 2009, “Simulations and Electrical Conductivity of Percolated Networks of Finite Rods With Various Degrees of Axial Alignment
,” Phys. Rev. B
0556-2805, 79
, p. 024301
.280.
Dalmas
, F.
, Dendievel
, R.
, Chazeau
, L.
, Cavaille
, J. -Y.
, and Gauthier
, C.
, 2006, “Carbon Nanotube-Filled Polymer Composites. Numerical Simulation of Electrical Conductivity in Three-Dimensional Entangled Networks
,” Acta Mater.
1359-6454, 54
(11
), pp. 2923
–2931
.281.
Berhan
, L.
, and Sastry
, A. M.
, 2007, “Modeling Percolation in High-Aspect-Ratio Fiber Systems. II. The Effect of Waviness on the Percolation Onset
,” Phys. Rev. E
1063-651X, 75
(4
), p. 041121
.282.
Li
, C.
, and Chou
, T. -W.
, 2007, “Continuum Percolation of Nanocomposites With Fillers of Arbitrary Shapes
,” Appl. Phys. Lett.
0003-6951, 90
(17
), p. 174108
.283.
Yi
, Y. B.
, Berhan
, L.
, and Sastry
, A. M.
, 2004, “Statistical Geometry of Random Fibrous Networks, Revisited: Waviness, Dimensionality, and Percolation
,” J. Appl. Phys.
0021-8979, 96
(3
), pp. 1318
–1327
.284.
Sun
, X.
, and Song
, M.
, 2009, “Highly Conductive Carbon Nanotube/Polymer Nanocomposites Achievable?
” Macromol. Theory Simul.
1022-1344, 18
, pp. 155
–161
.285.
Li
, C.
, Thostenson
, E. T.
, and Chou
, T. -W.
, 2008, “Effect of Nanotube Waviness on the Electrical Conductivity of Carbon Nanotube-Based Composites
,” Compos. Sci. Technol.
0266-3538, 68
, pp. 1445
–1452
.286.
Skakalova
, V.
, Dettlaff-Weglikowska
, U.
, and Roth
, S.
, 2005, “Electrical and Mechanical Properties of Nanocomposites of Single Wall Carbon Nanotubes With PMMA
,” Synth. Met.
0379-6779, 152
(1–3
), pp. 349
–352
.287.
Stadermann
, M.
, Papadakis
, S. J.
, Falvo
, M. R.
, Novak
, J.
, Snow
, E.
, Fu
, Q.
, Liu
, J.
, Fridman
, Y.
, Boland
, J. J.
, Superfine
, R.
, and Washburn
, S.
, 2004, “Nanoscale Study of Conduction Through Carbon Nanotube Networks
,” Phys. Rev. B
0556-2805, 69
(20
), p. 201402
.288.
Hecht
, D.
, Hu
, L. B.
, and Gruner
, G.
, 2006, “Conductivity Scaling With Bundle Length and Diameter in Single Walled Carbon Nanotube Networks
,” Appl. Phys. Lett.
0003-6951, 89
(13
), p. 133112
.289.
Salvato
, M.
, Cirillo
, M.
, Lucci
, M.
, Orlanducci
, S.
, Ottaviani
, I.
, Terranova
, M. L.
, and Toschi
, F.
, 2008, “Charge Transport and Tunneling in Single-Walled Carbon Nanotube Bundles
,” Phys. Rev. Lett.
0031-9007, 101
, p. 246804
.290.
Li
, C. Y.
, Thostenson
, E. T.
, and Chou
, T. W.
, 2007, “Dominant Role of Tunneling Resistance in the Electrical Conductivity of Carbon Nanotube-Based Composites
,” Appl. Phys. Lett.
0003-6951, 91
, p. 223114
.291.
Simmons
, J. G.
, 1963, “Generalized Formula for the Electric Tunnel Effect Between Similar Electrodes Separated by a Thin Insulating Film
,” J. Appl. Phys.
0021-8979, 34
, pp. 1793
–1803
.292.
Fuhrer
, M. S.
, Nygard
, J.
, Shih
, L.
, Forero
, M.
, Yoon
, Y. G.
, Mazzoni
, M. S. C.
, Choi
, H. J.
, Ihm
, J.
, Louis
, S. G.
, Zettl
, A.
, and McEuren
, P. L.
, 2000, “Crossed Nanotube Junctions
,” Science
0036-8075, 288
, pp. 494
–497
.293.
Buldum
, A.
, and Lu
, J. P.
, 2001, “Contact Resistance Between Carbon Nanotubes
,” Phys. Rev. B
0556-2805, 63
, p. 161403
.294.
Wang
, X.
, Liu
, H.
, Wang
, J.
, Zhang
, W.
, and Li
, Z.
, 2009, “Package Heat Dissipation With Integrated Carbon Nanotube Micro Heat Sink
,” International Conference on Electronic Packaging Technology and High Density Packaging
, pp. 73
–76
.295.
Colin
, J. R.
, 2006, “Carbon-Nanotube Arrays Take Heat Off Chips
,” Electon. Eng. Times
0192-1541, see http://www.eetasia.com/ART_8800419043_480600_NT_4a34d559.HTMhttp://www.eetasia.com/ART_8800419043_480600_NT_4a34d559.HTM.296.
Ebling
, D. G.
, Jacquot
, A.
, Bottner
, H.
, Schmidt
, J.
, and Spies
, P.
, 2007, “Nanocomposite Materials: Future and Challenge for the Production of Thermoelectric Devices
,” Seventh International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications
, pp. 305
–310
.297.
Yang
, Y.
, Gupta
, M. C.
, Zalameda
, J. N.
, and Winfree
, W. P.
, 2008, “Dispersion Behavior, Thermal and Electrical Conductivities of Carbon Nanotube-Polystyrene Nanocomposites
,” Micro & Nano Lett.
, 3
(2
), pp. 35
–40
.298.
Du
, F.
, Guthy
, C.
, Kashiwagi
, T.
, Fischer
, J. E.
, and Winey
, K. I.
, 2006, “An Infiltration Method for Preparing Single-Wall Nanotube/Epoxy Composites With Improved Thermal Conductivity
,” J. Polym. Sci., Part B: Polym. Phys.
0887-6266, 44
, pp. 1513
–1519
.299.
Song
, Y.
, and Youn
, J.
, 2006, “Evaluation of Effective Thermal Conductivity for Carbon Nanotube/Polymer Composites Using Control Volume Finite Element Method
,” Carbon
0008-6223, 44
, pp. 710
–717
.300.
Bryning
, M.
, Milkie
, D.
, Islam
, M.
, Kikkawa
, J.
, and Yodh
, A.
, 2005, “Thermal Conductivity and Interfacial Resistance in Single-Wall Carbon Nanotube Epoxy Composites
,” Appl. Phys. Lett.
0003-6951, 87
, p. 161909
.301.
Xu
, Y.
, Ray
, G.
, and Abdel-Magid
, B.
, 2006, “Thermal Behavior of Single-Walled Carbon Nanotube Polymer–Matrix Composites
,” Composites, Part A
1359-835X, 37
, pp. 114
–121
.302.
Huxtable
, S. T.
, Cahill
, D. G.
, Shenogin
, S.
, Xue
, L.
, Ozisik
, R.
, Barone
, P.
, Usrey
, M.
, Strano
, M. S.
, Siddons
, G.
, Shim
, G.
, and Keblinski
, P.
, 2003, “Interfacial Heat Flow in Carbon Nanotube Suspensions
,” Nature Mater.
1476-1122, 2
, pp. 731
–734
.303.
Nan
, C. -W.
, Liu
, G.
, Lin
, Y.
, and Li
, M.
, 2004, “Interface Effect on Thermal Conductivity of Carbon Nanotube Composites
,” Appl. Phys. Lett.
0003-6951, 85
(16
), pp. 3549
–3551
.304.
Chen
, T.
, Weng
, G.
, and Liu
, W. -C.
, 2005, “Effect of Kapitza Contact and Consideration of Tube-End Transport on the Effective Conductivity in Nanotube-Based Composites
,” J. Appl. Phys.
0021-8979, 97
, p. 104312
.305.
Winey
, K. I.
, Kashiwagi
, T.
, and Mu
, M.
, 2007, “Improving Electrical Conductivity and Thermal Properties of Polymers by the Addition of Carbon Nanotubes as Fillers
,” MRS Bull.
0883-7694, 32
, pp. 348
–353
.306.
Shenogina
, N.
, Shenogin
, S.
, Xue
, L.
, and Keblinski
, P.
, 2005, “On the Lack of Thermal Percolation in Carbon Nanotube Composites
,” Appl. Phys. Lett.
0003-6951, 87
, p. 133106
.307.
Kittel
, C.
, 1986, Introduction to Solid State Physics
, Wiley
, New York
.308.
Chen
, G.
, 2005, Nanoscale Energy Transport and Conversion
, Oxford University Press
, New York
.309.
Shenogin
, S.
, Xue
, L.
, Ozisik
, R.
, Keblinski
, P.
, and Cahill
, D. G.
, 2004, “Role of Thermal Boundary Resistance on the Heat Flow in Carbon-Nanotube Composites
,” J. Appl. Phys.
0021-8979, 95
(12
), pp. 8136
–8144
.310.
Bagchi
, A.
, and Nomura
, S.
, 2006, “On the Effective Thermal Conductivity of Carbon Nanotube Reinforced Polymer Composites
,” Compos. Sci. Technol.
0266-3538, 66
, pp. 1703
–1712
.311.
Xue
, Q. Z.
, 2006, “Model for the Effective Thermal Conductivity of Carbon Nanotube Composites
,” Nanotechnology
0957-4484, 17
, pp. 1655
–1660
.312.
Guthy
, C.
, Du
, F.
, Brand
, S.
, Winey
, K. I.
, and Fischer
, J. E.
, 2007, ““Thermal Conductivity of Single-Walled Carbon Nanotube/PMMA Nanocomposites,” Transactions of the ASME
,” ASME J. Heat Transfer
0022-1481, 129
(8
), pp. 1096
–1099
.313.
Spanos
, P. D.
, and Esteva
, M.
, 2009, “Effect of Stochastic Nanotube Waviness on the Elastic and Thermal Properties of Nanocomposites by Fiber Embedment in Finite Elements
,” J. Comput. Theor. Nanosci.
1546-1955, 6
(10
), pp. 2317
–2333
.314.
Gonnet
, P.
, Liang
, Z.
, Choi
, E. S.
, Kadambala
, R. S.
, Zhang
, C.
, Brooks
, J. S.
, Wang
, B.
, and Kramer
, L.
, 2006, “Thermal Conductivity of Magnetically Aligned Carbon Nanotube Buckypapers and Nanocomposites
,” Curr. Appl. Phys.
1567-1739, 6
, pp. 119
–122
.315.
Clancy
, T. C.
, and Gates
, T. S.
, 2006, “Modeling of Interfacial Modification Effects on Thermal Conductivity of Carbon Nanotube Composites
,” Polymer
0032-3861, 47
, pp. 5990
–5996
.316.
Maruyama
, S.
, Igarashi
, Y.
, Taniguchi
, Y.
, and Shibuta
, Y.
, 2004, “Molecular Dynamics Simulation of Heat Transfer Issues in Carbon Nanotubes
,” Proceedings of the First International Symposium on Micro and Nano Technology
, M.
Inoue
, eds., Honolulu, HI.317.
Zhong
, H.
, and Lukes
, J. R.
, 2006, “Interfacial Thermal Resistance Between Carbon Nanotubes: Molecular Dynamics Simulations and Analytical Thermal Modeling
,” Phys. Rev. B
0556-2805, 74
, p. 125403
.318.
Yang
, J.
, Waltermire
, S.
, Chen
, Y.
, Zinn
, A. A.
, Xu
, T. T.
, and Li
, D.
, 2010, “Contact Thermal Resistance Between Individual Multiwall Carbon Nanotubes
,” Appl. Phys. Lett.
0003-6951, 96
, p. 023109
.319.
Nan
, C. -W.
, Shi
, Z.
, and Lin
, Y.
, 2003, “A Simple Model for Thermal Conductivity of Carbon Nanotube-Based Composites
,” Chem. Phys. Lett.
0009-2614, 375
, pp. 666
–669
.320.
Yang
, R.
, Chen
, G.
, and Dresselhaus
, M.
, 2005, “Thermal Conductivity of Simple and Tubular Nanowires Composites in the Longitudinal Direction
,” Phys. Rev. B
0556-2805, 72
, p. 125418
.321.
Choi
, S.
, Zhang
, Z.
, Yu
, W.
, Lockwood
, F.
, and Grulke
, E.
, 2001, “Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,” Appl. Phys. Lett.
0003-6951, 79
(14
), pp. 2252
–2254
.322.
Collins
, P. G.
, Hersam
, M.
, Arnold
, M.
, Martel
, R.
, and Avouris
, Ph.
, 2001, “Current Saturation and Electrical Breakdown in Multiwalled Nanotubes
,” Phys. Rev. Lett.
0031-9007, 86
(14
), pp. 3128
–3131
.323.
Mingo
, N.
, and Broido
, D. A.
, 2005, “Carbon Nanotube Ballistic Thermal Conductance and Its Limits
,” Phys. Rev. Lett.
0031-9007, 95
(9
), p. 096105
.324.
Kim
, P.
, Shi
, L.
, Majumdar
, A.
, and McEuen
, P. L.
, 2001, “Thermal Transport Measurements of Individual Multiwalled Nanotubes
,” Phys. Rev. Lett.
0031-9007, 87
(21
), p. 215502
.325.
Duong
, H. M.
, Papavassiliou
, D. V.
, Mullen
, K. J.
, and Maruyama
, S.
, 2008, “Computational Modeling of the Thermal Conductivity of Single-Walled Carbon Nanotube-Polymer Composites
,” Nanotechnology
0957-4484, 19
, p. 065702
.326.
Seidel
, G. D.
, and Lagoudas
, D. C.
, 2008, “A Micromechanical Model for the Thermal Conductivity of Nanotube-Polymer Nanocomposites
,” ASME J. Appl. Mech.
0021-8936, 75
, p. 041025
.327.
Liu
, C. H.
, and Fan
, S. S.
, 2005, “Effects of Chemical Modifications on the Thermal Conductivity of Carbon Nanotube Composites
,” Appl. Phys. Lett.
0003-6951, 86
, p. 123106
.328.
Shenogin
, S.
, Bodapati
, A.
, Xue
, L.
, Ozisik
, R.
, and Keblinski
, P.
, 2004, “Effect of Chemical Functionalization on Thermal Transport of Carbon Nanotube Composites
,” Appl. Phys. Lett.
0003-6951, 85
(12
), pp. 2229
–2231
.329.
Padgett
, C. W.
, and Brenner
, D. W.
, 2004, “Influence of Chemisorption on the Thermal Conductivity of Single-Wall Carbon Nanotubes
,” Nano Lett.
1530-6984, 4
(6
), pp. 1051
–1053
.330.
Lee
, Y. S.
, and Chung
, M. J.
, 2000, “Study on Crack Detection Using Eigenfrequency Test Data
,” Comput. Struct.
0045-7949, 77
, pp. 327
–342
.331.
Ohno
, H.
, Naruse
, H.
, Kihara
, M.
, and Shimada
, A.
, 2001, “Industrial Applications of the BOTDR Optical Fiber Strain Sensor
,” Opt. Fiber Technol.
1068-5200, 7
, pp. 45
–64
.332.
Tikka
, J.
, Hedman
, R.
, and Siljander
, A.
, 2003, “Embedded Microcontroller Based Networked Measurement and Analysis System With Strain Gages Tailored to Fatigue Crack Detection
,” The Fourth International Workshop on Structural Health Monitoring
, Stanford, CA.333.
Kirikera
, G. R.
, Shinde
, V.
, Kang
, I.
, Schulz
, M. J.
, Shanov
, V.
, Datta
, S.
, Hurd
, D.
, Westheider
, B.
, Sundaresan
, M.
, and Ghoshal
, A.
, 2004, “Mimicking the Biological Neural System Using Electronic Logic Circuits [Structural Crack Detection]
,” Proc. SPIE
0277-786X, 5384
, pp. 148
–157
.334.
Kang
, I.
, Lee
, J. W.
, Choi
, G. R.
, Jung
, J. Y.
, Hwang
, S. -H.
, Choi
, Y. -S.
, Yoon
, K. J.
, and Schulz
, M. J.
, 2006, “Structural Health Monitoring Based on Electrical Impedance of a Carbon Nanotube Neuron
,” Key Eng. Mater.
1013-9826, 321–323
, pp. 140
–145
.335.
Kang
, I.
, Schulz
, M. J.
, Lee
, J. W.
, Choi
, G. R.
, Jung
, J. Y.
, Choi
, J. -B.
, and Hwang
, S. -H.
, 2007, “A Carbon Nanotube Smart Material for Structural Health Monitoring
,” Diffus. Defect Data, Pt. B
1012-0394, 120
, pp. 289
–296
.336.
Li
, C.
, and Chou
, T. W.
, 2006, “Atomistic Modeling of Carbon Nanotube-Based Mechanical Sensors
,” J. Intell. Mater. Syst. Struct.
1045-389X, 17
, pp. 247
–254
.337.
Li
, C.
, Thostenson
, E. T.
, and Chou
, T. W.
, 2008, “Sensors and Actuators Based on Carbon Nanotubes and Their Composites: A Review
,” Compos. Sci. Technol.
0266-3538, 68
, pp. 1227
–1249
.338.
Kostopoulos
, V.
, Tsotra
, P.
, Vavouliotis
, A.
, Karappapas
, P.
, Tsantzalis
, S.
, and Loutas
, T.
, 2005, Nano-Modified Fibre Reinforced Composites: A Way Towards the Development of New Materials for Space Applications
, Proceedings of the Fifth ESA Symposium on Micro/Nano Technologies for Space
.339.
Alexopoulos
, N. D.
, Bartholome
, C.
, Poulin
, P.
, and Marioli-Riga
, Z.
, 2010, “Structural Health Monitoring of Glass Fibre Reinforced Composites Using Embedded Carbon Nanotube (CNT) Fibers
,” Compos. Sci. Technol.
0266-3538, 70
, pp. 260
–271
.340.
Yeo-Heung
, Y.
, Kang
, I.
, Gollapudi
, R.
, Jong
, W. L.
, Hurd
, D.
, Shanov
, V. N.
, Schulz
, M. J.
, Kim
, J.
, Shi
, D.
, Boerio
, J. F.
, and Subramaniam
, S.
, 2005, “Multifunctional Carbon Nanofiber/Nanotube Smart Materials
,” Proc. SPIE
0277-786X, 5763
, pp. 184
–195
.341.
Lee
, S. I.
, and Yoon
, D. J.
, 2006, “Structural Health Monitoring for Carbon Fiber/Carbon Nanotube (CNT)/Epoxy Composite Sensor
,” Key Eng. Mater.
1013-9826, 321–323
, pp. 290
–293
.342.
Kostopoulos
, V.
, Tsotra
, P.
, Vavouliotis
, A.
, Karappapas
, P.
, Tsantzalis
, S.
, and Loutas
, T.
, 2007, “Damage Detection During Fatigue Loading of CNF Doped CFRPs via Resistance Measurements and AE
,” Solid State Phenom.
1012-0394, 121–123
, pp. 1399
–1402
.343.
Li
, C.
, and Chou
, T. W.
, 2008, “Modeling of Damage Sensing in Fibre Composites Using Carbon Nanotube Networks
,” Compos. Sci. Technol.
0266-3538, 68
, pp. 3373
–3379
.344.
Pfautsch
, E.
, 2007, “Challenges in Commercializing Carbon Nanotube Composites
,” WISE Journal of Engineering and Public Policy
, 11
, pp. 1
–42
.345.
Esawi
, A. M. K.
, and Farag
, M. M.
, 2007, “Carbon Nanotube Reinforced Composites: Potential and Current Challenges
,” Mater. Des.
0264-1275, 28
, pp. 2394
–2401
.346.
Rothbarth
, F.
, 2010, “Bayer Material Science Opens World’s Largest Carbon Nanotube Pilot Facility
,” Bayer Press Release, http://www.press.bayer.com/baynews/baynews.nsf/id/0D55208BDE14F238C12576BA002D6FDA?Open&ccm=001http://www.press.bayer.com/baynews/baynews.nsf/id/0D55208BDE14F238C12576BA002D6FDA?Open&ccm=001347.
Shaffer
, M. S. P.
, and Sandler
, J. K. W.
, 2006, “Carbon Nanotube/Nanofibre Polymer Composites
,” Processing and Properties of Nanocomposites
, S. G.
Advani
, ed., World Scientific
, Singapore
, pp. 1
–59
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.