It has still not been shown that current failure theories can be accurate for all loading configurations, boundary conditions, layups, and thicknesses of composite laminates. A comprehensive discussion is neither available in the most recent bibliographical reviews, nor in the most recent assessments of their accuracy. In this review article, new failure theories, recent improvements to existing theories, and the most relevant contributions to the modeling of failure mechanisms of composites with continuous reinforcement fibers are discussed, together with their recent applications. The most recent physically based practical failure criteria, which use standard engineering quantities, have affordable computational costs and do not require empirical parameters to be examined for a variety of situations. Their predictions are compared to those of generalized failure criteria currently implemented into widespread finite element codes. The objective is to offer designers a guidance of the range of validity of current theories. To enlarge the set of tests for a single theory, the sample test set, i.e., layups, constituent materials, loading configurations, and boundary conditions, and the experimental results used to develop a failure criterion are used for different criteria. The finite element analysis is carried out using three-dimensional (3D), mixed elements capable of very accurately predicting the local stresses. The ply level stresses are computed discretizing the layers by a 3D meshing. The fiber and matrix stresses, which can differ significantly from the ply level stresses, are computed using a local 3D discretization of the constituents. The phase-averaged fiber and matrix stresses and the ply level stresses are used for failure computations. It is seen that generalized failure criteria can be as accurate as physically based failure criteria for some cases, while the opposite occurs for other cases. Likewise, a criterion can be the most accurate for a particular case and inaccurate in other cases. None of the failure criteria considered appeared accurate for all of the cases considered. However, a group of physically based criteria is identified that, collectively, provides quite accurate predictions. These criteria could be used as reciprocal checks. There on 136 references cited in this reivew article.

1.
Rowlands
,
R. E.
, 1985,
Strength (Failure) Theories and Their Experimental Correlations. Handbook of Composites 3
,
G. C.
Sih
, and
A. M.
Skudra
, eds,
Elsevier
New York, pp.
71
125
.
2.
Nahas
,
M. N.
, 1986, “
Survey of Failure and Post-Failure Theories of Laminated Fibre Reinforced Composites
,”
J. Compos. Technol. Res.
0884-6804,
8
, pp.
138
153
.
3.
Echaabi
,
J. F.
, and
Trochu
,
F.
, 1996, “
Review of Failure Criteria of Fibrous Composite Materials
,”
Polym. Compos.
0272-8397,
17
, pp.
786
798
.
4.
Hinton
,
M. J.
, and
Soden
,
P. D.
, 1998, “
Predicting Failure in Composite Laminates: The Background to the Exercise
,”
Compos. Sci. Technol.
0266-3538,
58
, pp.
1001
1010
.
5.
Soden
,
P. D.
,
Hinton
,
M. J.
, and
Kaddour
,
A. S.
, 1998, “
Lamina Properties, Lay-up Configurations and Loading Conditions for a Wide Range of Fibre Reinforced Composite Laminates
,”
Compos. Sci. Technol.
0266-3538,
58
, pp.
1011
1224
.
6.
Soden
,
P. D.
,
Hinton
,
M. J.
, and
Kaddour
,
A. S.
, 1998, “
A Comparison of the Redictive Capabilities of Current Failure Theories for Composite Laminates
,”
Compos. Sci. Technol.
0266-3538,
58
, pp.
1225
1254
.
7.
Soden
,
P. D.
,
Hinton
,
M. J.
, and
Kaddour
,
A. S.
, 2002, “
Biaxial Test Results for Strength and Deformation of a Range of e-Glass and Carbon Fibre Reinforced Composite Laminates: Failure Exercise Benchmark Data
,”
Compos. Sci. Technol.
0266-3538,
62
, pp.
1489
1514
.
8.
Hinton
,
M. J.
,
Kaddour
,
A. S.
, and
Soden
,
P. D.
, 2002, “
A Comparison of the Predictive Capabilities of Current Failure Theories for Composite Laminates, Judged Against Experimental Evidence
,”
Compos. Sci. Technol.
0266-3538,
62
, pp.
1725
1797
.
9.
Paris
,
F.
, 2001, “
A Study of Failure Criteria of Fibrous Composite Materials
,” NASA/CR-2001-210661.
10.
Tennyson
,
R. C.
, and
Wharam
,
G. E.
, 1985, “
Evaluation of Failure Criterion for Graphite-Epoxy
,” NASA CR-172547.
11.
Tong
,
L.
, 1997, “
An Assessment of Failure Criteria to Predict the Strength of Adhesively Bonded Composite Double Lap Joints
,”
J. Reinf. Plast. Compos.
0731-6844,
16
(
8
), pp.
698
713
.
12.
Tsai
,
S. W.
, and
Wu
,
E. M.
, 1971, “
A General Theory of Strength for Anisotropic Materials
,”
J. Compos. Mater.
0021-9983,
5
, pp.
58
80
.
13.
Hashin
,
Z.
, and
Rotem
,
A.
, 1973, “
A Fatigue Failure Criterion for Fiber Reinforced Materials
,”
J. Compos. Mater.
0021-9983,
7
, pp.
448
464
.
14.
Rotem
,
A.
, and
Hashin
,
Z.
, 1975, “
Failure Modes of Angle-Ply Laminates
,”
J. Compos. Mater.
0021-9983,
9
, pp.
191
206
.
15.
Hashin
,
Z.
, 1980, “
Failure Criteria for Unidirectional Fiber Composites
,”
ASME J. Appl. Mech.
0021-8936,
47
, pp.
329
334
.
16.
Hashin
,
Z.
, 1987, “
Analysis of Orthogonally Cracked Laminates Under Tension
,”
ASME J. Appl. Mech.
0021-8936,
54
, pp.
872
879
.
17.
Yamada
,
S. E.
, and
Sun
,
C. T.
, 1978, “
Analysis of Laminate Strength and its Distribution
,”
J. Compos. Mater.
0021-9983,
12
, pp.
275
284
.
18.
Chang
,
F. K.
, and
Lessard
,
L.
, 1990, “
Damage Tolerance of Laminated Composites Containing an Open Hole and Subjected to Compressive Loadings, Part I—Analysis
,”
J. Compos. Mater.
0021-9983,
25
, pp.
2
43
.
19.
Chang
,
F. K.
, and
Chen
,
M. H.
, 1987, “
The In Situ Ply Shear Strength Distributions in Graphite/Epoxy Laminated Composites
,”
J. Compos. Mater.
0021-9983,
21
, pp.
708
733
.
20.
Choi
,
H. T.
,
Wu
,
H. Y. T.
, and
Chang
,
F. K.
, 1991, “
A New Approach Toward Understanding Damage Mechanism and Mechanics of Laminated Composites Due to Low-Velocity Impact: Part II—Analysis
,”
J. Compos. Mater.
0021-9983,
25
, pp.
1012
1038
.
21.
Choi
,
H. Y.
, and
Chang
,
F. K.
, 1992, “
A Model for Predicting Damage in Graphite/Epoxy Laminated Composites Resulting From Low-Velocity Point Impact
,”
J. Compos. Mater.
0021-9983,
26
, pp.
2134
2169
.
22.
Choi
,
H. Y.
,
Wang
,
H. S.
, and
Chang
,
F. K.
, 1992, “
Effect of Laminate Configuration and Impactor’s Mass on the Initial Impact Damage of Composite Plates Due to Line-Loading Impact
,”
J. Compos. Mater.
0021-9983,
26
, pp.
804
827
.
23.
Shahid
,
I.
, and
Chang
,
F. K.
, 1995, “
An Accumulative Damage Model for Tensile and Shear Failures of Laminated Composite Plates
,”
J. Compos. Mater.
0021-9983,
29
, pp.
926
981
.
24.
Sun
,
C. T.
,
Quinn
,
B. J.
, and
Oplinger
,
D. W.
, 1995, “
An Accumulative Damage Model for Tensile and Shear Failures of Laminated Composite Plates
,”
J. Compos. Mater.
0021-9983,
29
, pp.
926
981
.
25.
Puck
,
A.
, 1995,
Festigkeitsanalyse von Faser-Matrix-Laminaten—Modelle für die Praxis
,
Carl Hanser Verlag
, München.
26.
Salencon
,
J.
, 2001,
Handbook of Continuum Mechanics: General Concepts, Tthermoelasticity
,
Springer
, New York.
27.
Puck
,
A.
, 1969, “
Festigkeitsberechnung an Glassfaser/Kunstoff Laminaten bei Zusammengesetzeter Beanspruchung
,”
Kunststoffe
0023-5563,
59
, pp.
780
787
.
28.
Puck
,
A.
, 1969, “
Calculating the Strength of Glass-Fibre/Plastic Laminates Under Combined Load
,”
Kunststoffe
0023-5563,
55
, pp.
18
19
.
29.
Puck
,
A.
, 1992, “
Failure Criterion Shows the Direction
,”
Kunststoffe
0023-5563,
82
, pp.
29
32
.
30.
Puck
,
A.
, 1992, “
Fracture Criteria for Highly Stressed Fibre-Plastic Composites Which Meet Requirements of Design Practice
,”
Kunststoffe
0023-5563,
82
, pp.
34
38
.
31.
Puck
,
A.
, and
Shurmann
,
H.
, 1998, “
Failure Analysis of FRP Laminates by Means of Physically Based Phenomenological Models
,”
Compos. Sci. Technol.
0266-3538,
58
, pp.
1045
1067
.
32.
Mayes
,
S. J.
, and
Hansen
,
A. C.
, 2001, “
Multicontinuum Failure Analysis of Composite Structural Laminates
,”
Mech. Compos. Mater. Struct.
1075-9417,
8
, pp.
249
262
.
33.
Hill
,
R.
, 1950,
The Mathematical Theory of Plasticity
,
Oxford University Press
, London.
34.
Hill
,
R.
, 1963, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
0022-5096,
11
, pp.
357
372
.
35.
Kroll
,
L.
, and
Hufenbach
,
W.
, 1997, “
Physically Based Failure Criterion for Dimensioning of Thick-Walled Laminates
,”
Appl. Compos. Mater.
0929-189X,
4
, pp.
321
332
.
36.
Davila
,
C. G.
, and
Camanho
,
P. P.
, 2003, “
Failure Criteria for FRP Laminates in Plane Stress
,” NASA/TM-2003-212663.
37.
Abu-Farsakh
,
G.
, 1989, “
New Material Models for Non-linear Stress-Strain Behavior of Composite Materials
,”
Composites
0010-4361,
20
, pp.
349
360
.
38.
Abu-Farsakh
,
G.
, and
Abdel-Jaward
,
Y. A.
, 1994, “
A New Failure Criterion for Nonlinear Composite Materials
,”
J. Compos. Technol. Res.
0884-6804,
16
, pp.
138
145
.
39.
Brewer
,
J. C.
, and
Lagace
,
P. A.
, 1988, “
Quadratic Stress Criterion for Initiation of Delamination
,”
J. Compos. Mater.
0021-9983,
22
, pp.
1141
1155
.
40.
Whitney
,
J. M.
, and
Nuismer
,
R. J.
, 1974, “
Stress Failure Criteria for Laminated Composites Containing Stress Concentrations
,”
J. Compos. Mater.
0021-9983,
8
, pp.
253
265
.
41.
O’Brien
,
T. K.
, 1998, “
Interlaminar Fracture Toughness: The Long and Winding Road to Standardization
,”
Composites, Part B
1359-8368,
29B
, pp.
57
62
.
42.
O’Brien
,
T. K.
, 2001, “
Characterization, Analysis and Prediction of Delamination in Composites Using Fracture Mechanics
,” NASA ICF100942OR.
43.
Chang
,
F. K.
,
Scott
,
R. A.
, and
Springer
,
G. S.
, 1984, “
Failure Strength of Nonlinearly Elastic Composite Laminates Containing a Pin Loaded Hole
,”
J. Compos. Mater.
0021-9983,
18
, pp.
464
477
.
44.
Sandhu
,
R. S.
, 1975, “
Nonlinear Behavior of Unidirectional and Angle Ply Laminates
,”
J. Aircr.
0021-8669,
13
, pp.
104
111
.
45.
Hahn
,
H. T.
, and
Tsai
,
S. W.
, 1983, “
On the Behavior of Composite Laminates After Initial Failures
,”
Astron. Astrophys.
0004-6361,
21
, pp.
58
62
.
46.
Chang
,
F. K.
, and
Chang
,
K. Y.
, 1987, “
Post Failure Analysis of Bolted Composite Joints in Tension or Shear-Out Mode Failure
,”
J. Compos. Mater.
0021-9983,
21
, pp.
803
833
.
47.
Chang
,
F. K.
, and
Chang
,
K. Y.
, 1987, “
A Progressive Damage Model for Laminated Composites Containing Stress Concentrations
,”
J. Compos. Mater.
0021-9983,
21
, pp.
834
855
.
48.
Lessard
,
L. B.
, and
Shokrieh
,
M. M.
, 1995, “
Two-Dimensional Modeling of Composite Pinned-Joint Failure
,”
J. Compos. Mater.
0021-9983,
29
, pp.
671
697
.
49.
Shokrieh
,
M. M.
, and
Lessard
,
L. B.
, 2000, “
Progressive Fatigue Damage Modeling of Composite Materials. Part I: Modeling
,”
J. Compos. Mater.
0021-9983,
34
, pp.
1056
1080
.
50.
Shokrieh
,
M. M.
, and
Lessard
,
L. B.
, 1997, “
Multiaxial Fatigue Behavior of Unidirectional Plies Based on Uniaxial Fatigue Experiments. Part I: Modeling
,”
Int. J. Fatigue
0142-1123,
19
, pp.
201
207
.
51.
Shokrieh
,
M. M.
, and
Lessard
,
L. B.
, 1997, “
Multiaxial Fatigue Behavior of Unidirectional Plies Based on Uniaxial Fatigue Experiments. Part II: Experimental Evaluations
,”
Int. J. Fatigue
0142-1123,
19
, pp.
209
217
.
52.
Dano
,
M. L.
,
Gendron
,
G.
, and
Picard
,
A.
, 2000, “
Stress and Failure of Mechanically Fastened Joints in Composite Laminates
,”
Compos. Struct.
0263-8223,
50
, pp.
287
296
;
Dano
,
M. L.
,
Gendron
,
G.
, and
Picard
,
A.
, 2000, “
Stress and Failure of Mechanically Fastened Joints in Composite Laminates
,”
Compos. Struct.
0263-8223
50
,pp.
804
827
.
53.
Kostopoulos
,
V.
,
Markopoulos
,
Y. P.
,
Giannopoulos
,
G.
, and
Vlachos
,
D. E.
, 2002, “
Finite Element Analysis of Impact Damage Response of Composite Motorcycle Safety Helmets
,”
Composites, Part B
1359-8368,
33B
, pp.
99
107
.
54.
Chou
,
T. W.
, and
Ko
,
F. K.
, 1989,
Textile Structural Composites
,
Elsevier
, New York,
Composite Materials Series 3
.
55.
Chang
,
F. K.
, and
Springer
,
G. S.
, 1986, “
The Strengths of Fiber Reinforced Composite Bends
,”
J. Compos. Mater.
0021-9983,
20
, pp.
30
47
.
56.
Luo
,
R. K.
,
Green
,
E. R.
, and
Morrison
,
C. J.
, 2001, “
An Approach to Evaluate the Impact Damage Initiation and Propagation in Composite Laminates
,”
Composites, Part B
1359-8368,
32B
, pp.
513
520
.
57.
Zhang
,
Y.
,
Wang
,
S.
, and
Petersson
,
B.
, 2003, “
Large Deflection Analysis of Composite Laminates
,”
J. Mater. Process. Technol.
0924-0136,
138
, pp.
34
40
.
58.
Liu
,
S.
,
Kutlu
,
Z.
, and
Chang
,
F. K.
, 1993, “
Matrix Cracking and Delamination in Laminated Composite Beams Subjected to a Transverse Concentrated Line Load
,”
J. Compos. Mater.
0021-9983,
27
, pp.
436
470
.
59.
Hwang
,
W. C.
, and
Sun
,
C. T.
, 1989, “
Failure Analysis of Laminated Composites by Using Iterative Three-Dimensional Finite Element Method
,”
Compos. Struct.
0263-8223,
33
, pp.
41
47
.
60.
Mohammadi
,
S.
,
Owen
,
D. R. J.
, and
Peric
,
D.
, 1998, “
A Combined Finite/Discrete Element Algorithm for Delamination Analysis of Composites
,”
Finite Elem. Anal. Design
0168-874X,
28
, pp.
249
262
.
61.
Wang
,
C. Y.
, and
Yew
,
C. H.
, 1990, “
Impact Damage in Composite Laminates
,”
Compos. Struct.
0263-8223,
37
, pp.
967
982
.
62.
Icardi
,
U.
, and
Zardo
,
G.
, 2005, “
C0 Plate Element for Delamination Damage Analysis, Based on a Zig-Zag Model and Strain Energy Updating
,”
Int. J. Impact Eng.
0734-743X,
31
, pp.
579
606
.
63.
Chai
,
Y.
, and
Gädke
,
M.
, 1999, “
Impact Damage Simulation and Compression After Impact of Composite Stiffened Panels
,” DLR Report 1B,
131
99/20
.
64.
Christensen
,
R. M.
, 1988, “
Tensor Transformations and Failure Criteria for the Analysis of Fiber Composite Materials
,”
J. Compos. Mater.
0021-9983,
22
, pp.
874
897
.
65.
Sleight
,
D. W.
,
Knight
,
N. F.
, and
Wang
,
J. T.
, 1997, “
Evaluation of a Progressive Failure Analysis Methodology for Laminated Composite Structures
,”
Proc. of AIAA/ASME/ASCE/AHS/ASC 38th Structures, Structural Dynamics and Materials Conference
,
AIAA
, Washington, DC, AIAA Paper No. 97-1187.
66.
Christensen
,
R. M.
, 1997, “
Stress Based Yield/Failure Citeria for Fiber Composites
,”
Int. J. Solids Struct.
0020-7683,
34
, pp.
529
543
.
67.
Cohen
,
D.
,
Hyer
,
M. W.
,
Stuart
,
J.
,
Griffith
,
O. H.
,
Prasad
,
C.
, and
Yalamanchili
,
S. R.
, 1995, “
Failure Criterion for Thick Multifastener Graphite-Epoxy Composite Joints
,”
J. Compos. Technol. Res.
0884-6804,
17
, pp.
237
248
.
68.
Echaabi
,
J. F.
,
Trochu
,
F.
, and
Gauvin
,
R.
, 1995, “
A General Strength Theory for Composite Materials Based on Dual Kriging Interpolation
,”
J. Reinf. Plast. Compos.
0731-6844,
14
, pp.
211
232
.
69.
Echaabi
,
J. F.
, and
Trochu
,
F.
, 1997, “
Failure Mode Dependent Strength Criteria for Composite Laminates
,”
J. Reinf. Plast. Compos.
0731-6844,
16
(
10
), pp.
926
945
.
70.
Echaabi
,
J.
, and
Trochu
,
F.
, 1996, “
A Methodology to Derive Failure Criteria of Fibrous Composite Laminates
,”
J. Compos. Mater.
0021-9983,
30
, pp.
1088
1114
.
71.
Echaabi
,
J.
, and
Trochu
,
F.
, 1997, “
Failure Mode Dependent Strength Criteria for Composite Laminates
,”
J. Reinf. Plast. Compos.
0731-6844,
16
, pp.
926
945
.
72.
Edge
,
E. C.
, 1998, “
Stress Based Grant-Sanders Method for Predicting Failure of Composite Laminates
,”
Compos. Sci. Technol.
0266-3538,
58
, pp.
1033
1041
.
73.
Sanders
,
R. C.
, and
Grant
,
P.
, 1982, “
The Strength of Laminated Plates Under In-Plane Loading
,” BAe Report No. SOR(P)130.
74.
Eriksson
,
I.
, and
Aronsson
,
C. G.
, 1991, “
Strength of Tensile Loaded Graphite/Epoxy Laminates Containing Cracks, Open and Filled Holes
,”
J. Compos. Mater.
0021-9983,
24
, pp.
456
482
.
75.
Bäcklund
,
J.
, 1981, “
Fracture Analysis of Notched Composites
,”
Comput. Struct.
0045-7949,
13
, pp.
145
154
.
76.
Feng
,
W. W.
, 1991, “
A Failure Criterion for Composite Materials
,”
J. Compos. Mater.
0021-9983,
25
, pp.
88
100
.
77.
Green
,
A. E.
, and
Adkins
,
J. E.
, 1970,
Large Elastic Deformations and Non-Linear Continuum Mechanics
,
Clarendon Press
, Oxford.
78.
Gol’denblat
,
I.
, and
Kopnov
,
V. A.
, 1965, “
Strength of Glass-Reinforced Plastics in the Complex Stress State
,”
Polymer Mech.
,
1
, pp.
54
59
.
79.
Jiang
,
Z.
, and
Tennyson
,
R. C.
, 1989, “
Closure of the Cubic Tensor Polynomial Failure Surface
,”
J. Compos. Mater.
0021-9983,
23
, pp.
208
231
.
80.
Huybrechts
,
S.
,
Maji
,
A.
,
Lao
,
J.
,
Wegner
,
P.
, and
Meink
,
T.
, 2002, “
Validation of the Quadratic Composite Failure Criteria With Out-of-Plane Shear Terms
,”
J. Compos. Mater.
0021-9983,
36
, pp.
1879
1887
.
81.
Tennyson
,
R. C.
,
Nayaro
,
A. P.
, and
Wharam
,
G. E.
, 1980, “
Application of the Cubic Polynomial Strength Criteria to the Failure Analysis of Composite Materials
,”
J. Compos. Mater.
0021-9983,
14
, pp.
28
41
.
82.
Huang
,
C. L. D.
, 1990, “
Strength Coefficients of the Cubic Criterion for Graphite Composites
,”
ASME J. Eng. Mater. Technol.
0094-4289,
112
, pp.
227
230
.
83.
Malmeister
,
A. K.
, 1966, “
Theories of Strength
,”
Polymer Mech.
,
2
, pp.
324
331
.
84.
Norris
,
C. B.
, “
Strength of Orthotropic Materials Subjected to Combined Stress
,” U.S. Forest Products Laboratory Report No. 1816.
85.
Fisher
,
L.
, 1960, “
How to Predict Structural Behavior of Reinforced Plastic Laminates
,”
Mod. Plast.
0026-8275,
37
, pp.
121
128
;
Fisher
,
L.
, 1960, “
How to Predict Structural Behavior of Reinforced Plastic Laminates
,”
Mod. Plast.
0026-8275
37
,pp.
208
209
.
86.
Ashkenazi
,
E. K.
, 1965, “
Problems of the Anisotropy of Strength
,”
Polym. Mech.
,
1
, pp.
60
70
.
87.
Liu
,
K. S.
, and
Tsai
,
S. W.
, 1998, “
A Progressive Quadratic Failure Criterion for a Laminate
,”
Compos. Sci. Technol.
0266-3538,
58
, pp.
1023
1032
.
88.
Kilic
,
H.
, and
Haj-Ali
,
R.
, 2003, “
Progressive Damage and Nonlinear Analysis of Pultruded Composite Structures
,”
Composites, Part B
1359-8368,
34B
, pp.
235
250
.
89.
Kam
,
T. Y.
, and
Lai
,
F. M.
, 1999, “
Experimental and Theoretical Predictions of First-Ply Failure Strength of Laminated Composite Plates
,”
Int. J. Solids Struct.
0020-7683,
36
, pp.
2379
2395
.
90.
Reddy
,
J. N.
, and
Pandey
,
A. K.
, 1987, “
A First-Ply Failure Analysis of Composite Laminates
,”
Comput. Struct.
0045-7949,
25
, pp.
371
393
.
91.
Padhi
,
G. S.
,
Shenoi
,
R. A.
,
Moy
,
S. S. J.
, and
Hawkins
,
G. L.
, 1998, “
Progressive Failure and Ultimate Collapse of Laminated Composite Plates in Bending
,”
Compos. Struct.
0263-8223,
40
, pp.
277
291
.
92.
Prusty
,
B. G.
,
Satsangi
,
S. K.
, and
Ray
,
C.
, 2001, “
First-Ply Failure Analysis of Laminated Panels Under Transverse Loading
,”
J. Reinf. Plast. Compos.
0731-6844,
20
, pp.
671
687
.
93.
Pal
,
P.
, and
Ray
,
C.
, 2002, “
Progressive Failure Analysis of Laminated Composite Plates by Finite Element Method
,”
J. Reinf. Plast. Compos.
0731-6844,
21
, pp.
1505
1513
.
94.
Kam
,
T. Y.
,
Sher
,
H. F.
,
Chao
,
T. N.
, and
Chang
,
R. R.
, 1996, “
Prediction of Deflection and First-Ply Failure Load of Thin Laminated Composite Plates Via the Finite Element Approach
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
375
398
.
95.
Kam
,
T. Y.
, and
Jan
,
T. B.
, 1995, “
First-Ply Failure Analysis of Laminated Composite Plates Based on the Layerwise Linear Displacement Theory
,”
Compos. Struct.
0263-8223,
32
, pp.
583
591
.
96.
Yeh
,
H. Y.
, and
Richards
,
W. L.
, 1996, “
Yeh-Stratton Criterion for Stress-Concentrations on Fiber-Reinforced Composite Materials
,” NASA CR-198054.
97.
Yeh
,
H. Y.
, and
Richards
,
W. L.
, 1997, “
Failure Study of Composite Materials by the Yeh-Stratton Criterion
,” NASA TM-113087.
98.
Azzi
,
V. D.
, and
Tsai
,
S. W.
, 1965, “
Anisotropic Strength of Composites
,”
Exp. Mech.
0014-4851,
5
, pp.
283
288
.
99.
Kim
,
R. Y.
, and
Soni
,
S. R.
, 1984, “
Experimental and Analytical Studies on the Onset of Delamination in Laminated Composites
,”
J. Compos. Mater.
0021-9983,
18
, pp.
70
80
.
100.
Hart-Smith
,
L. J.
, 1989, “
A New Approach to Fibrous Composite Laminate Strength Prediction
,” 8th DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, NASA CP-3087, pp.
663
693
.
101.
Hou
,
J. P.
,
Petrinic
,
N.
,
Ruiz
,
C.
, and
Hallet
,
S. R.
, 2000, “
Prediction of Impact Damage in Composite Plates
,”
Compos. Sci. Technol.
0266-3538,
60
, pp.
273
281
.
102.
Hou
,
J. P.
,
Petrinic
,
N.
, and
Ruiz
,
C.
, 2001, “
A Delamination Criterion for Laminated Composites Under Low Velocity Impact
,”
Compos. Sci. Technol.
0266-3538,
61
, pp.
2069
2074
.
103.
Sun
,
H. T.
,
Chang
,
F. K.
, and
Qing
,
X.
, 2002, “
The Response of Composite Joints With Bolt-Clamping Loads, Part I: Model Development
,”
J. Compos. Mater.
0021-9983,
36
, pp.
47
67
.
104.
Perugini
,
P.
,
Riccio
,
A.
, and
Scaramuzzino
,
F.
, 2001, “
Three-Dimensional Progressive Damage Analysis of Composite Joints
,” 8th International Conference on Civil and Structural Engineering Computing, Paper No. 62.
105.
Joo
,
S. G.
,
Hong
,
C. S.
, and
Kim
,
C. G.
, 2001, “
Free Edge Effect of the Post Failure Behavior of Composite Laminates Under Tensile Loading
,”
J. Reinf. Plast. Compos.
0731-6844,
20
, pp.
191
222
.
106.
Lee
,
Y. J.
, and
Huang
,
C. H.
, 1991, “
Ultimate Strength and Failure Process of Composite Laminated Plates Subjected to Low-Velocity Impact
,”
J. Reinf. Plast. Compos.
0731-6844,
10
, pp.
542
556
.
107.
Pachajoa
,
M. E.
,
Frances
,
M. K.
, and
Lee
,
J. D.
, 1995, “
Stress and Failure Analysis of Composite Structures
,”
Eng. Fract. Mech.
0013-7944,
50
, pp.
883
902
.
108.
Shahid
,
I.
, 1993, “
Progressive Failure Analysis of Laminated Composite Plates Subjected to In-Plane Tensile and Shear Loads
,” Ph.D. dissertation, Department of Civil Engineering. Stanford University.
109.
Hung
,
C. L.
, and
Chang
,
F. K.
, 1996, “
Bearing Failure of Bolted Composite Joints. Part II: Model and Verification
,”
J. Compos. Mater.
0021-9983,
30
, pp.
1359
1400
.
110.
McCartney
,
L. N.
, 1998, “
Predicting Transverse Crack Formation in Cross-Ply Laminates
,”
Compos. Sci. Technol.
0266-3538,
58
, pp.
1069
1081
.
111.
Rotem
,
A.
, and
Nelson
,
H. G.
, 1981, “
Fatigue Behavior of Graphite-Epoxy Laminate at Elevated Temperatures
,” ASTM STP 723, pp.
152
173
.
112.
Rotem
,
A.
, 1998, “
Prediction of Laminate Failure With the Rotem Failure Criterion
,”
Compos. Sci. Technol.
0266-3538,
58
, pp.
1083
1094
.
113.
Rotem
,
A.
, 1994, “
The Anisotropic Fatigue Behavior of Isotropic Composite Laminates
,”
Int. J. Fatigue
0142-1123,
16
, pp.
266
272
.
114.
Kim
,
C. K.
, and
Yeh
,
H. Y.
, 1994, “
Development of a New Yielding Criterion: The Yeh-Stratton Criterion
,”
Eng. Fract. Mech.
0013-7944,
47
, pp.
569
582
.
115.
Yeh
,
H. Y.
, and
Kim
,
C. K.
, 1994, “
The Yeh-Stratton Criterion for Composite Materials
,”
J. Compos. Mater.
0021-9983,
28
, pp.
927
939
.
116.
Yeh
,
H. Y.
, and
Kim
,
C. H.
, 1994, “
Effects of Interaction Component of the Generalized Yeh-Stratton Criterion
,”
J. Reinf. Plast. Compos.
0731-6844,
13
, pp.
793
802
.
117.
Yeh
,
H. L.
, and
Yeh
,
H. Y.
, 2003, “
A Sequential Fiber Failure Criterion for the Tensile Fracture in Notched Fiber Reinforced Composites
,”
J. Reinf. Plast. Compos.
0731-6844,
22
, pp.
463
478
.
118.
Yeh
,
H. L.
, and
Yeh
,
H. Y.
, 2002, “
The Modified Quadric Surfaces Criterion for Composite Materials
,”
J. Reinf. Plast. Compos.
0731-6844,
21
, pp.
277
289
.
119.
Yeh
,
H. Y.
, and
Kim
,
C.
, 1994, “
The Mixed Mode Crack Propagation by the Yeh-Stratton Criterion
,”
Eng. Fract. Mech.
0013-7944,
48
, pp.
595
607
.
120.
Reddy
,
J. N.
, 1997,
Mechanics of Laminated Composite Plates: Theory and Analysis
,
CRC Press
, Boca Raton.
121.
Tenek
,
L. T.
, and
Argyris
,
J.
, 1998,
Finite Element Analysis for Composite Structures
,
Kluwer
, Dordrecht.
122.
Noor
,
A. K.
,
Burton
,
W. S.
, and
Bert
,
C. W.
, 1996, “
Computational Models for Sandwich Panels and Shells
,”
Appl. Mech. Rev.
0003-6900,
49
(
3
), pp.
155
199
.
123.
Noor
,
A. K.
, 1996, “
Computational Structures Technology-Leap Frogging Into the Twenty-First Century
,”
Advances in Computational Structures Technology
,
Civil-Comp Press
, Edimburg, pp.
1
18
.
124.
Thornburgh
,
R.
, and
Chattopadhyay
,
A.
, 2001, “
Unified Approach to Modeling Matrix Cracking and Delamination in Laminated Composite Structures
,”
AIAA J.
0001-1452,
39
(
1
), pp.
153
160
.
125.
Aitharaju
,
V. R.
, and
Averill
,
R. C.
, 1999, “
Co Zig-Zag Kinematic Displacement Models for the Analysis of Laminated Composites
,”
Mech. Compos. Mater. Struct.
1075-9417,
6
(
1
), pp.
31
56
.
126.
Icardi
,
U.
, 2003, “
Application of Zig-Zag Theories to Sandwich Beams
,”
Mech. Compos. Mater. Struct.
1075-9417,
10
, pp.
77
97
.
127.
Icardi
,
U.
, and
Atzori
,
A.
, 2004, “
Simple, Efficient Mixed Solid Element for Accurate Analysis of Local Effects in Laminated and Sandwich Composites
,”
Adv. Eng. Software
0965-9978,
35
, pp.
843
859
.
128.
Hoa
,
S. V.
, and
Feng
,
W.
, 1998,
Hybrid Finite Element Method for Stress Analysis of Laminated Composites
,
Kluwer
, Dordrecht.
129.
Babuska
,
I.
, 1973, “
The Finite Element Method With Lagrange Multipliers
,”
Numer. Math.
0029-599X,
20
, pp.
179
192
.
130.
Brezzi
,
F.
, 1974, “
On the Existence, Uniqueness and Approximation of Saddle Point Problems Arising From Lagrangian Multipliers
,”
RAIRO: Anal. Numer.
, pp.
129
151
.
131.
Bathe
,
K. J.
, 1982,
Finite Element Procedure in Engineering Analysis
,
Prentice-Hall
, Englewood Cliffs, NJ.
132.
Olson
,
M. D.
, 1983, “
The Mixed Finite Element Method in Elasticity and Elastic Contact Problems
,”
Atluri
,
S. N.
,
Gallagher
,
R. H.
, and
Zienkiewicz
,
O. C.
, eds.,
Hybrid and Mixed Finite Element Methods
,
Wiley
, New York, pp.
19
49
.
133.
Icardi
,
U.
,
Locatto
,
S.
, and
Longo
,
A.
, 2004, “
State of the Art in Failure Prediction of Fibrous Composites
,” Politecnico di Torino, Department of Aerospace Engineering, Report 243, October.
134.
Benzeggagh
,
M. L.
, and
Kenane
,
M.
, 1996, “
Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites With Mixed-Mode Bending Apparatus
,”
Compos. Sci. Technol.
0266-3538,
56
, pp.
439
449
.
135.
Hoffman
,
O.
, 1967, “
The Brittle Strength of Orthotropic Materials
,”
J. Compos. Mater.
0021-9983,
1
, pp.
200
206
.
You do not currently have access to this content.