Reciprocity theorems in elasticity theory were discovered in the second half of the 19th century. For elastodynamics they provide interesting relations between two elastodynamic states, say states A and B. This paper will primarily review applications of reciprocity relations for time-harmonic elastodynamic states. The paper starts with a brief introduction to provide some historical and general background, and then proceeds in Sec. 2 to a brief discussion of static reciprocity for an elastic body. General comments on waves in solids are offered in Sec. 3, while Sec. 4 provides a brief summary of linearized elastodynamics. Reciprocity theorems are stated in Sec. 5. For some simple examples the concept of virtual waves is introduced in Sec. 6. A virtual wave is a wave motion that satisfies appropriate conditions on the boundaries and is a solution of the elastodynamic equations. It is shown that combining the desired solution as state A with a virtual wave as state B provides explicit results for state A. Basic elastodynamic states are discussed in Sec. 7. These states play an important role in the formulation of integral representations and integral equations, as shown in Sec. 8. Reciprocity in 1-D and full-space elastodynamics are discussed in Secs. 910, respectively. Applications to a half-space and a layer are reviewed in Secs. 1112. Section 13 is concerned with reciprocity of coupled acousto-elastic systems. The paper is completed with a brief discussion of reciprocity for piezoelectric systems. There are 61 references cited in this review article.

1.
Love
,
A. E. H.
, 1892,
A Treatise on the Mathematical Theory of Elasticity
,
Dover Publications
, New York, reprinted 1944.
2.
Betti
,
E.
, 1872, “
Teori Della Elasticita
,”
Nuovo Cimento
0029-6341, pp.
7
10
.
3.
Rayleigh
,
Lord
, 1873, “
Some General Theorems Relating to Vibrations
,”
Proc. London Math. Soc.
,
4
, pp.
357
368
.
4.
Achenbach
,
J. D.
, 1973,
Wave Propagation in Elastic Solids
,
Elsevier Science, Ltd.
Amsterdam.
5.
deHoop
,
A. T.
, 1995,
Handbook of Radiation and Scattering of Waves
,
Academic Press
, London.
6.
Achenbach
,
J. D.
, 2003,
Reciprocity in Elastodynamics
,
Cambridge University Press
, Cambridge, UK.
7.
Maxwell
,
J. C.
, 1864, “
On the Calculation of the Equilibrium and Stiffness of Frames
,”
Philos. Mag.
0031-8086,
27
, p.
294
.
8.
Timoshenko
,
S.
, 1930,
Strength of Materials
,
D. Van Nostrand Company
, New York.
9.
Mohr
,
O.
, 1906, “
Abhandlungen aus dem Gebiet der Technischen Mechanik
,” Berlin.
10.
Müller-Breslau
,
H.
, 1908,
Die Neueren Methoden der Festigkeitslehre
, Berlin.
11.
Tauchert
,
T. R.
, 1974,
Energy Principles in Structural Mechanics
,
McGraw Hill
, New York.
12.
Pierce
,
A. D.
, 1981,
Acoustics: an Introduction to its Physical Principles and Applications
,
Acoust. Soc. of America
, Woodbury, NY.
13.
Rayleigh
,
Lord
, 1878,
The Theory of Sound
, Vol.
II
, Dover reprint,
Dover Publications
, New York, 1945.
14.
Graffi
,
D.
, 1946, “
Sul Teorema di Reciprocita Nella Dinamica dei Corpi Elastici
,”
Mem. Acad. Sci. Bologna
,
10
, pp.
103
111
.
15.
Fokkema
,
J. T.
, and
van den Berg
,
P. M.
, 1993,
Seismic Applications of Acoustic Reciprocity
,
Elsevier Science Publishers B. V.
, Amsterdam.
16.
McLachlan
,
N. W.
, 1961,
Bessel Functions for Engineers
,
Clarendon Press
, Oxford.
17.
Abramowitz
,
M.
, and
Stegun
,
E. A.
, 1964,
Handbook of Mathematical Functions
, National Bureau of Standards,
U.S. Government Printing Office
, Washington, D.C.
18.
Stokes
,
G. G.
, 1849, “
On the Dynamical Theory of Diffraction
,”
Trans. Cambridge Philos. Soc.
0371-5779,
9
, p.
1
.
19.
Achenbach
,
J. D.
,
Gautesen
,
A. K.
, and
McMaken
,
H.
, 1982,
Ray Methods for Waves in Elastic Solids
,
Pitman Advanced Publishing Program
, Boston.
20.
Beskos
,
D. E.
, 1987, “
Boundary Element Methods in Dynamic Analysis
,”
Appl. Mech. Rev.
0003-6900,
40
, pp.
1
23
.
21.
Kobayashi
,
S.
, 1987, “
Elastodynamics
,” in
Computational Methods in Mechanics
,
D. E.
Beskos
(e.d.),
Handbooks in Mechanics and Mathematical Methods, Vol. 3
,
North-Holland
, Amsterdam.
22.
Banerjee
,
P. K.
, and
Kobayashi
,
S.
(eds.), 1992,
Advanced Dynamic Analysis by Boundary Element Methods
,
Elsevier Applied Science
, London.
23.
Bonnet
,
M.
, 1995,
Boundary Integral Equation Methods for Solids and Fluids
,
John Wiley & Sons
, New York.
24.
Zhang
,
Ch.
, and
Gross
,
D.
, 1998,
On Wave Propagation in Elastic Solids with Cracks
,
Computational Mechanics Publications
, Southampton, UK.
25.
Cohen
,
J. K.
, and
Bleistein
,
N.
, 1977, “
An Inverse Method for Determining Small Variations in Propagation Speed
,”
SIAM J. Appl. Math.
0036-1399,
32
, pp.
784
799
.
26.
Mal
,
A. K.
, and
Knopoff
,
L.
, 1967, “
Elastic Wave Velocities in Two Component Systems
,”
J. Inst. Math. Appl.
0020-2932,
3
, pp.
376
387
.
27.
Tan
,
T. H.
, 1977, “
Reciprocity Relations for Scattering of Plane Elastic Waves
,”
J. Acoust. Soc. Am.
0001-4966,
61
, p.
928
.
28.
Payton
,
R. G.
, 1964, “
An Application of the Dynamic Betti-Rayleigh Reciprocal Theorem to Moving-Point Loads in Elastic Media
,”
Q. Appl. Math.
0033-569X,
XXI
, pp.
299
313
.
29.
Burridge
,
R.
, and
Knopoff
,
L.
, 1964, “
Body Force Equivalents for Seismic Dislocations
,”
Bull. Seismol. Soc. Am.
0037-1106,
54
, pp.
1875
1888
.
30.
Achenbach
,
J. D.
, 2000, “
Calculation of Surface Wave Motions due to a Subsurface Point Force: An Application of Elastodynamic Reciprocity
,”
J. Acoust. Soc. Am.
0001-4966,
107
, pp.
1892
1897
.
31.
Achenbach
,
J. D.
, 2003, “
Laser Excitation of Surface Wave Motion
,”
J. Mech. Phys. Solids
0022-5096,
51
, pp.
1885
1902
.
32.
Arias
,
I.
, and
Achenbach
,
J. D.
, 2003, “
Thermoelastic Generation of Ultrasound by Line-Focused Laser Irradiation
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
6917
6935
.
33.
Hudson
,
J. A.
, 1980,
The Excitation and Propagation of Elastic Waves
,
Cambridge University Press
, Cambridge, UK.
34.
Rice
,
J. R.
, 1980, “
Elastic Wave Emission From Damage Processes
,”
J. Nondestruct. Eval.
0195-9298,
1
, pp.
215
224
.
35.
Knopoff
,
L.
, and
Gangi
,
A. F.
, 1959, “
Seismic Reciprocity
,”
Geophysics
0016-8033,
24
, pp.
681
691
.
36.
DiMaggio
,
F. L.
, and
Bleich
,
H. H.
, 1959, “
An Application of a Dynamic Reciprocal Theorem
,”
ASME J. Appl. Mech.
0021-8936,
26
, pp.
678
679
.
37.
Keller
,
J. B.
, and
Karal
,
F. C.
Jr.
, 1964, “
Geometrical Theory of Elastic Surface-Wave Excitation and Propagation
,”
J. Acoust. Soc. Am.
0001-4966,
36
, pp.
32
40
.
38.
Li
,
Z.-L.
, and
Achenbach
,
J. D.
, 1991, “
Interaction of a Rayleigh Wave With a Disbond in a Material Interphase Normal to a Free Surface
,”
Ultrasonics
0041-624X,
29
, pp.
45
52
.
39.
Arias
,
I.
, and
Achenbach
,
J. D.
, 2004, “
Rayleigh Wave Correction for the BEM Analysis of Two-Dimensional Elastodynamic Problems in a Half-Space
,”
Wave Motion
0165-2125,
39
, pp.
61
76
.
40.
Achenbach
,
J. D.
, 1998, “
Lamb Waves as Thickness Vibrations Superimposed on a Membrane Carrier Wave
,”
J. Acoust. Soc. Am.
0001-4966,
103
, pp.
2283
2285
.
41.
Mindlin
,
R. D.
, 1960, “
Waves and Vibrations in Isotropic Elastic Plates
,” in
Structural Mechanics
, edited by
J. N.
Goodier
and
N. J.
Hoff
,
Pergamon Press
, New York, pp.
199
232
.
42.
Lyon
,
R. H.
, 1955, “
Response of an Elastic Plate to Localized Driving Force
,”
J. Acoust. Soc. Am.
0001-4966,
27
, pp.
259
265
.
43.
Vasudevan
,
N.
, and
Mal
,
A. K.
, 1985, “
Response of an Elastic Plate to Localized Transient Sources
,”
ASME J. Appl. Mech.
0021-8936,
52
, pp.
356
362
.
44.
Miklowitz
,
J.
, 1962, “
Transient Compressional Waves in an Infinite Elastic Plate or Elastic Layer Overlying a Rigid Half-Space
,”
ASME J. Appl. Mech.
0021-8936,
29
, pp.
53
60
.
45.
Weaver
,
R. L.
, and
Pao
,
Y.-H.
, 1982, “
Axisymmetric Elastic Waves Excited by a Point Source in a Plate
,”
ASME J. Appl. Mech.
0021-8936,
49
, pp.
821
836
.
46.
Santosa
,
F.
, and
Pao
,
Y.-H.
, 1989, “
Transient Axially Asymmetric Response of an Elastic Plate
,”
Wave Motion
0165-2125,
11
, pp.
271
296
.
47.
Achenbach
,
J. D.
, and
Xu
,
X.
, 1999, “
Wave Motion in an Isotropic Elastic Layer Generated by a Time-Harmonic Point Load of Arbitrary Direction
,”
J. Acoust. Soc. Am.
0001-4966,
106
, pp.
83
90
.
48.
Kino
,
G. S.
, 1978, “
The Application of Reciprocity Theory to Scattering of Acoustic Waves by Flaws
,”
J. Appl. Phys.
0021-8979,
49
, pp.
3190
3199
.
49.
Junger
,
M. C.
, and
Feit
,
F.
, 1972,
Sound, Structures and Their Interaction
,
MIT Press
, Cambridge, MA.
50.
Fahy
,
F.
, 1987,
Sound and Structural Vibration
,
Academic Press
, London.
51.
Cremer
,
L.
,
Heckl
,
M.
, and
Ungar
,
E. E.
, 1973,
Structure-Borne Sound
,
Springer-Verlag
, New York.
52.
Crighton
,
D. G.
,
Dowling
,
A. P.
,
Ffowcs Williams
,
J. E.
,
Heckl
,
M.
, and
Leppington
,
F. G.
, 1992,
Modern Methods in Analytical Acoustics
,
Springer-Verlag
, London.
53.
Lyamshev
,
L. M.
, 1959, “
A Method for Solving the Problem of Sound Radiation by Thin Elastic Plates and Shells
,”
Sov. Phys. Acoust.
0038-562X,
5
, pp.
122
123
.
54.
Belousov
,
Y. I.
, and
Rimskii-Korsakov
,
A. V.
, 1975, “
The Reciprocity Principle in Acoustics and its Applications to the Sound Fields of Bodies
,”
Sov. Phys. Acoust.
0038-562X,
21
, pp.
103
109
.
55.
Auld
,
B. A.
, 1973,
Acoustic Fields and Waves in Solids
, Vols.
I
&
II
, reprinted
R. E. Krieger Publ. Co.
, 1990, Malabar, FL.
56.
Foldy
,
L. L.
, and
Primakoff
,
H.
, 1945, “
A General Theory of Passive Linear Electroacoustic Transducers and the Electroacoustic Reciprocity Theorem I
,”
J. Acoust. Soc. Am.
0001-4966,
17
, pp.
109
120
.
57.
Primakoff
,
H.
, and
Foldy L.
L.
, 1947, “
A General Theory of Passive Linear Electroacoustic Transducers and the Electroacoustic Reciprocity Theorem II
,”
J. Acoust. Soc. Am.
0001-4966,
19
, pp.
50
120
.
58.
Auld
,
B. A.
, 1979, “
General Electromechanical Reciprocity Relations Applied to the Calculation of Elastic Wave Scattering Coefficients
,”
Wave Motion
0165-2125,
1
, pp.
3
10
.
59.
Thompson
,
R. B.
, 1994, “
Interpretation of Auld’s Electromechanical Reciprocity Relation via a One-Dimensional Example
,”
Res. Nondestruct. Eval.
0934-9847,
5
, pp.
147
156
.
60.
Liang
,
K. K.
,
Kino
,
G. S.
, and
Khuri-Yakub
,
B. T.
, 1985, “
Material Characterization by the Inversion of V(z)
,”
IEEE Trans. Sonics Ultrason.
0018-9537,
32
, pp.
266
273
.
61.
Block
,
G.
,
Harris
,
J. G.
, and
Hayat
,
T.
, 2000, “
Measurement Models for Ultrasonic Nondestructive Evaluation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
47
, pp.
604
611
.
You do not currently have access to this content.