Many critical issues in biofluid dynamics occur at the boundaries between fluids, solids, or both. These issues can be very complex since in many cases the boundaries are deformable and moving. Furthermore, different characteristic times, lengths, and material properties are often present which make any computational task taxing. The present review focuses on computational modeling techniques for moving boundaries and multi-component systems with emphasis on micro-scale biofluid physics, including i) the dynamics of leukocyte (white blood cell) deformation, recovery, and adhesion; and ii) the thin-film dynamics involving tear–structure interaction in soft contact lens applications. In these problems, multiple length scales exist, and at least one of them is on the order of 10 μm or smaller. After presenting appropriate computational techniques for moving boundaries, recent research on leukocyte deformation, recovery, and adhesion is reviewed in the context of multi-component, multi-time-scale, and micro-macro interactions. The soft contact lens problem is discussed from the viewpoint of large disparities in length scales due to high aspect ratios. Depending on the nature of the problem and the goal of the computation, alternative computational techniques can successfully address the physical and numerical challenges. A major interest of this article is to stress how moving boundary techniques can be applied to provide new insights into the physico-chemical behavior of complex biological systems. To treat different time and length scales with due care in a moving boundary framework is a grand challenge in developing first-principle-based computational capabilities. There are 175 references in this review article.

1.
Crank J (1984), Free and Moving Boundary Problems, Oxford University Press, New York.
2.
Floryan
JM
and
Rasmussen
H
(
1989
),
Numerical methods for viscous flows with moving boundaries
,
Appl. Mech. Rev.
42
(
12
),
323
340
.
3.
Shyy W, Udaykumar HS, Rao MM, and Smith RW (1996), Computational Fluid Dynamics with Moving Boundaries, Taylor and Francis, Washington DC.
4.
Harlow
FH
and
Welch
JE
(
1965
),
Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface
,
Phys. Fluids
8
,
2182
2189
.
5.
Vicelli
JA
(
1969
),
A method for including arbitrary external boundaries in the MAC incompressible fluid computing technique
,
J. Comput. Phys.
4
,
543
551
.
6.
Fukai
J
,
Zhao
Z
,
Poulikakos
D
,
Megaridis
CM
, and
Miyatake
O
(
1993
),
Modeling of the deformation of a liquid droplet impinging upon a flat surface
,
Phys. Fluids
5
,
2588
2599
.
7.
Chen
S
,
Johnson
DB
, and
Raad
PE
(
1995
),
Velocity boundary conditions for the simulation of free surface fluid flow
,
J. Comput. Phys.
116
,
262
276
.
8.
Liu
H
and
Kawachi
K
(
1998
),
A numerical study of insect flight
,
J. Comput. Phys.
146
,
124
156
.
9.
Liu
H
and
Kawachi
K
(
1999
),
A numerical study of undulatory swimming
,
J. Comput. Phys.
155
,
223
247
.
10.
Ashgriz
N
and
Poo
JY
(
1991
),
FLAIR: Flux line-segment model for an Advection and interface reconstruction
,
J. Comput. Phys.
93
,
449
468
.
11.
Unverdi
SO
and
Tryggvason
G
(
1992
),
A front tracking method for viscous, incompressible, multi-fluid flows
,
J. Comput. Phys.
100
,
25
37
.
12.
Udaykumar
HS
,
Mittal
R
, and
Shyy
W
(
1999
),
Computation of solid-liquid phase fronts in the sharp interface limit on fixed grids
,
J. Comput. Phys.
153
,
535
574
.
13.
Shyy W (1994), Computational Modeling for Fluid Flow and Interfacial Transport, Elsevier Sci Publ, Amsterdam.
14.
He X, Fuentes C, Shyy W, Lian Y, and Carroll B (2000), Computation of transitional flows around an airfoil with a movable flap, AIAA Fluids 2000 and Exhibit, Paper No AIAA-2000-2240, June 19–22, Denver CO.
15.
Steger JL (1991), Thoughts on the Chimera grid method of simulation of three-dimensional viscous flow, Proc Computational Fluid Dynamics Symp on Aeropropulsion, NASA CP-3078, 1–10.
16.
Johnson
RA
and
Belk
DM
(
1995
),
Multigrid approach to overset grid communication
,
AIAA J.
33
,
2305
2308
.
17.
Venkatakrishnan
V
(
1996
),
Perspectives on unstructured grid flow solvers
,
AIAA J.
34
,
533
547
.
18.
Camacho
GT
and
Ortiz
M
(
1996
),
Computational modeling of impact damage in brittle materials
,
Int. J. Solids Struct.
33
,
2899
2938
.
19.
Camacho
GT
and
Ortiz
M
(
1997
),
Adaptive Lagrangian modeling of ballistic penetration of metallic targets
,
Comput. Methods Appl. Mech. Eng.
142
,
269
301
.
20.
Fritz
MJ
and
Boris
JP
(
1979
),
The Lagrangian solution of transient problems in hydrodynamics using a triangular mesh
,
J. Comput. Phys.
31
,
173
215
.
21.
Glimm
J
,
Grove
J
,
Lindquist
B
,
McBryan
OA
, and
Tryggvason
G
(
1988
),
The bifurcation of tracked scalar waves
,
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
9
,
61
79
.
22.
Rausch
RD
,
Batina
JT
, and
Yang
HTY
(
1993
),
Three-dimensional time-marching aeroelastic analyses using an unstructured-grid Euler method
,
AIAA J.
31
(
9
),
1626
1633
.
23.
Lizska
TJ
,
Duarte
CAM
, and
Tworzydlo
WW
(
1996
),
Hp-meshless cloud method
,
Comput. Methods Appl. Mech. Eng.
139
,
263
288
.
24.
Duarte
A
and
Oden
JT
(
1996
),
An h-p adaptive method using clouds
,
Comput. Methods Appl. Mech. Eng.
139
,
237
262
.
25.
Randles
PW
and
Libersky
LD
(
1996
),
Smoothed particle hydrodynamics: some recent improvements and applications
,
Comput. Methods Appl. Mech. Eng.
139
,
375
408
.
26.
Hirt
CW
and
Nichols
BD
(
1981
),
Volume of Fluid (VOF) method for the dynamics of free boundaries
,
J. Comput. Phys.
39
,
201
225
.
27.
Brackbill
JU
,
Kothe
DB
, and
Zemach
C
(
1992
),
A continuum method for modeling surface tension
,
J. Comput. Phys.
100
,
335
354
.
28.
Kothe
DB
and
Mjolsness
RC
(
1992
),
Ripple: A new model for incompressible flows with free surfaces
,
AIAA J.
30
,
2694
2700
.
29.
Scardovelli
R
and
Zaleski
S
(
1999
),
Direct numerical simulation of free-surface and interfacial flow
,
Annu. Rev. Fluid Mech.
31
,
567
603
.
30.
Osher
S
and
Sethian
JA
(
1988
),
Fronts propagating with curvature dependent speed: Algorithms based in Hamilton-Jacobi formulations
,
J. Comput. Phys.
79
,
12
49
.
31.
Sethian JA (1996), Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge Univ Press.
32.
Kobayashi
R
(
1993
),
Modeling and numerical simulation of dendritic crystal growth
,
Physica D
63
,
410
423
.
33.
Wheeler
AA
,
Boettinger
WJ
, and
McFadden
GB
(
1992
),
Phase field model for isothermal phase transitions in binary alloys
,
Phys. Rev. A
45
,
7424
7439
.
34.
Voller
VR
and
Prakash
C
(
1987
),
A fixed grid numerical modeling methodology for convection-diffusion mushy region phase-change problems
,
Int. J. Heat Mass Transf.
30
,
1709
1719
.
35.
Udaykumar
HS
,
Kan
H-C
,
Shyy
W
, and
Tran-Son-Tay
R
(
1997
),
Multiphase dynamics in arbitrary geometries on fixed Cartesian grids
,
J. Comput. Phys.
137
,
366
405
.
36.
Zhang
H
,
Zheng
LL
,
Prasad
V
, and
Hou
TY
(
1998
),
A curvilinear level set formulation for highly deformable free surface problems with application to solidification
,
Numer. Heat Transfer, Part B
34
,
1
20
.
37.
Sussman M, Almgren AS, Bell JB, Collela P, Howell LH, and Welcome ML (1997), An adaptive level set approach for incompressible two-phase flows, Lawrence Berkely Lab Report, LBNL-40327.
38.
Barth
T
and
Sethian
JA
(
1998
),
Numerical schemes for the Hamilton-Jacobi and level-set equations on triangulated domains
,
J. Comput. Phys.
145
,
1
40
.
39.
Ubbink
O
and
Issa
RI
(
1999
),
A method for capturing sharp fluid interfaces on arbitrary meshes
,
J. Comput. Phys.
153
,
26
50
.
40.
Lafaurie
B
,
Nardone
C
,
Scardovelli
R
,
Zaleski
S
, and
Zanetti
G
(
1994
),
Modeling merging and fragmentation in multiphase flows with SURFER
,
J. Comput. Phys.
113
,
134
147
.
41.
Xiao
F
(
1999
),
A computational model for suspended large rigid bodies in 3D unsteady viscous flows
,
J. Comput. Phys.
155
,
348
379
.
42.
Colella
P
and
Woodward
PR
(
1984
),
The piecewise parabolic method (PPM) for gas-dynamical simulations
,
J. Comput. Phys.
54
,
174
201
.
43.
Juric
D
and
Tryggvason
G
(
1996
),
A front tracking method for dendritic solidification
,
J. Comput. Phys.
123
,
127
148
.
44.
Peskin
CS
(
1977
),
Numerical analysis of blood flow in the heart
,
J. Comput. Phys.
25
,
220
252
.
45.
Fauci
LJ
and
Peskin
CS
(
1988
),
A computational model of aquatic animal locomotion
,
J. Comput. Phys.
77
,
85
108
.
46.
Beyer
RP
and
LeVeque
RJ
(
1992
),
Analysis of a one-dimensional model for the immersed boundary method
,
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
29
(
2
),
332
364
.
47.
Udaykumar
HS
and
Shyy
W
(
1995
),
A grid-supported marker particle scheme for interface tracking
,
Numer. Heat Transfer, Part B
27
,
127
153
.
48.
Ye
Y
,
Mittal
R
,
Udaykumar
HS
, and
Shyy
W
(
1999
),
A Cartesian grid method for simulation of viscous incompressible flow with complex immersed boundaries
,
J. Comput. Phys.
156
,
209
240
.
49.
Kwak
S
and
Pozrikidis
C
(
1998
),
Adaptive triangulation of evolving, closed, or open surfaces by the advancing-front method
,
J. Comput. Phys.
145
,
61
88
.
50.
Yon
S
and
Pozrikidis
C
(
1998
),
A finite-volume/boundary-element method for flow past interfaces in the presence of surfactants, with application to shear flow past a viscous drop
,
Comput. Fluids
27
,
879
902
.
51.
Liang
Py
(
1991
),
Numerical method for calculation of surface tension flows on arbitrary grids
,
AIAA J.
29
,
161
167
.
52.
DeGregoria
AJ
and
Schwartz
LW
(
1985
),
Finger breakup in Hele-Shaw cells
,
Phys. Fluids
28
,
2313
2314
.
53.
Glimm
J
,
McBryan
O
,
Melnikoff
R
, and
Sharp
DH
(
1986
),
Front tracking applied to Rayleigh-Taylor instability
,
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
7
,
230
251
.
54.
Miyata
H
(
1986
),
Finite difference simulation of breaking waves
,
J. Comput. Phys.
65
,
179
214
.
55.
Wang
HP
and
McLay
RT
(
1986
),
Automatic remeshing scheme for modeling hot forming process
,
ASME J. Fluids Eng.
108
,
465
469
.
56.
Thomas
PD
and
Lombard
CK
(
1979
),
Geometric conservation law and its application to flow computations on moving grids
,
AIAA J.
15
,
226
243
.
57.
Thompson JF, Warsi ZUA, and Mastin CW (1985), Numerical Grid Generation, Elsevier, New York.
58.
Demirdzic
I
and
Peric
M
(
1988
),
Space conservation law in finite volume calculations of fluid flow
,
Int. J. Numer. Methods Fluids
8
,
1037
1050
.
59.
Demerdzic
I
and
Peric
M
(
1990
),
Finite volume method for prediction of fluid flow in arbitrary shaped domains with moving boundaries
,
Int. J. Numer. Methods Fluids
10
,
771
790
.
60.
Shyy
W
,
Pal
S
,
Udaykumar
HS
, and
Choi
D
(
1998
),
Structured moving grid and geometric conservation laws for fluid flow computation
,
Numer. Heat Transfer, Part A
34
,
369
397
.
61.
Kan
H-C
,
Udaykumar
HS
,
Shyy
W
, and
Tran-Son-Tay
R
(
1998
),
Hydrodynamics of a compound drop with application to leukocyte modeling
,
Phys. Fluids
10
,
760
774
.
62.
Kan
H-C
,
Udaykumar
HS
,
Shyy
W
, and
Tran-Son-Tay
R
(
1999a
),
Numerical analysis of the deformation of an adherent drop under shear flow
,
ASME J. Biomech. Eng.
121
,
160
169
.
63.
Kan
H-C
,
Udaykumar
HS
,
Shyy
W
,
Vigneron
P
, and
Tran-Son-Tay
R
(
1999b
),
Effects of nucleus on leukocyte recovery
,
Ann. Biomed. Eng.
27
,
648
655
.
64.
Melton JE (1996), Automated three-dimensional cartesian grid generation and euler flow solutions for arbitrary geometries, PhD Thesis, Univ of California, Dept of Mech Eng, Davis CA.
65.
Aftomis MJ, Berger MJ, and Adomavicius G (2000), A parallel multilevel method for adaptively refined Cartesian grids with embedded boundaries, AIAA 38th Aerospace Sciences Meeting and Exhibit, AIAA 2000-0808.
66.
Agresar
G
,
Linderman
JJ
,
Tryggvason
G
, and
Powell
KG
(
1998
),
An adaptive, Cartesian, front tracking method for the motion, deformation and adhesion of circulating cells
,
J. Comput. Phys.
143
,
346
380
.
67.
Udaykumar
HS
,
Shyy
W
, and
Rao
MM
(
1996
),
ELAFINT - A mixed Eulerian-Lagrangian method for fluid flows with complex and moving boundaries
,
Int. J. Numer. Methods Fluids
22
,
691
704
.
68.
Hou
TY
,
Lowengrub
JS
, and
Shelley
MJ
(
1994
),
Removing the stiffness from interfacial flows with surface tension
,
J. Comput. Phys.
114
,
312
312
.
69.
Fung YC (1993), Biomechanics: Mechanical Properties of Living Tissues, Second edition, Springer-Verlag, New York.
70.
Schmid-Scho¨nbein
GW
,
Sung
KLP
, and
To¨zeren
H
(
1981
),
Passive mechanical properties of human leukocytes
,
Biophys. J.
6
,
243
256
.
71.
Schmid-Scho¨nbein
GW
and
Skalak
R
(
1984
),
Continuum mechanical model of leukocytes during protopod formation
,
ASME J. Biomech. Eng.
106
,
10
18
.
72.
Marchesi
VT
and
Florey
HW
(
1960
),
Electron micrographic observations on the emigration of leukocytes
,
Q. J. Exp. Physiol.
45
,
343
347
.
73.
Zigmond
SH
(
1978
),
Chemotaxis by polymorphonuclear leukocytes
,
J. Cell Biol.
77
,
269
287
.
74.
Elsbach
P
,
Beckerdite
S
,
Pettis
P
, and
Franson
R
(
1974
),
Persistence of regulation of macromolecular synthesis by Escherichia coli during killing by disrupted rabbit granulocytes
,
Infect. Immun.
9
,
663
668
.
75.
Waugh
R
and
Evans
E
(
1979
),
Thermoelasticity of red blood cells membrane
,
Biophys. J.
26
,
115
131
.
76.
Evans EA and Skalak R (1980), in Mechanics and Thermodynamics of Biomembranes, CRC Press, Inc, Boca Raton, Florida.
77.
Mohandas
N
and
Evans
E
(
1994
),
Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects
,
Annu. Rev. Biophys. Biomol. Struct.
23
,
787
818
.
78.
Waugh
R
and
Bauserman
RG
(
1995
),
Physical measurements of bilayer-skeletal separation forces
,
Ann. Biomed. Eng.
23
,
308
321
.
79.
Discher
DE
,
Mohandas
N
, and
Evans
EA
(
1994
),
Molecular maps of red cell deformation: Hidden elasticity and in situ connectivity
,
Science
266
,
1032
1035
.
80.
Discher
DE
,
Boal
DH
, and
Boey
SK
(
1997
),
Phase transitions and anisotropic responses of planar triangular nets under large deformation
,
Phys. Rev. E
55
,
4762
4772
.
81.
Discher
DE
,
Boal
DH
, and
Boey
SK
(
1998
),
Simulations of the erythrocyte cytoskeleton at large deformation II Micropipette aspiration
,
Biophys. J.
75
,
1584
1597
.
82.
Discher
DE
(
2000
),
New insights into erythrocyte membrane organization and microelasticity
,
Curr. Opin. Hematol.
7
,
117
122
.
83.
Schmid-Scho¨nbein
GW
,
Kosawada
T
,
Skalak
R
and
Chien
S
(
1995
),
Membrane model of endothelial cell leukocytes. A proposal for the origin of a cortical stress
,
ASME J. Biomech. Eng.
117
,
171
178
.
84.
Dong
C
,
Skalak
R
,
Sung
KLP
,
Schmid-Scho¨nbein
GW
, and
Chien
S
(
1988
),
Passive deformation analysis of human leukocytes
,
ASME J. Biomech. Eng.
110
,
27
36
.
85.
Needham
D
and
Hochmuth
RM
(
1990
),
Rapid flow of passive neutrophils into a 4 μm pipet and measurement of cytoplasmic viscosity
,
ASME J. Biomech. Eng.
112
,
269
275
.
86.
Tsaı¨
MA
,
Frank
RS
, and
Waugh
RE
(
1994
),
Passive mechanical behavior of human neutrophils: Effect of cytochalas-B
,
Biophys. J.
66
,
2166
2172
.
87.
Tsaı¨
MA
,
Waugh
RE
, and
Keng
PC
(
1998
),
Passive mechanical behaviour of human neutrophils: Effect of colchicine and paclitaxel
,
Biophys. J.
74
,
3282
3291
.
88.
Harris
AG
and
Skalak
TC
(
1993
),
Leukocyte cytoskeletal structure determines capillary plugging and network resistance
,
Am. J. Physiol.
265
,
1670
1675
.
89.
Dong
C
,
Skalak
R
, and
Sung
KLP
(
1991
),
Cytoplasmic rheology of passive neutrophils
,
Biorheology
68
,
557
567
.
90.
Zhelev
DV
,
Needham
D
, and
Hochmuth
RM
(
1994
),
Role of the membrane cortex in neutrophil deformation in small pipets
,
Biophys. J.
67
,
696
705
.
91.
Tran-Son-Tay
R
,
Kan
H-C
,
Udaykumar
HS
,
Damay
E
, and
Shyy
W
(
1998
),
Rheological modeling of leukocytes
,
Med. Biol. Eng. Comput.
36
,
246
250
.
92.
Schmid-Scho¨nbein
GW
,
Shih
YY
, and
Chien
S
(
1980
),
Morphology of leukocytes
,
Blood
56
,
866
875
.
93.
Bagge
U
,
Skalak
R
, and
Attefors
R
(
1977
),
Granulocyte rheology
,
Adv. Microcirc.
7
,
29
48
.
94.
Evans
E
and
Kukan
B
(
1984
),
Passive material behavior of granulocytes based on large deformation and recovery after deformations tests
,
Blood
64
,
1028
1035
.
95.
Usami
S
,
Wung
SL
,
Skierczyuski
BA
,
Skalak
R
, and
Chien
S
(
1992
),
Locomotion forces generated by a polymorphonuclear leukocyte
,
Biophys. J.
63
,
1663
1666
.
96.
Skierczyuski
BA
,
Usami
S
,
Chien
S
, and
Skalak
R
(
1993
),
Active motion of polynuclear leukocytes in response to chemoattractant in a micropipette
,
ASME J. Biomech. Eng.
115
,
503
509
.
97.
Tran-Son-Tay R, Ting-Beall HP, Zhelev DV, and Hochmuth RM (1994b), Viscous behavior of leukocytes, in Cell Mechanics and Cellular Engineering, VC Mow, F Guilak, R Tran-Son-Tay, and RM Hochmuth (eds), Springer-Verlag, NY, 22–32.
98.
Moazzam
F
,
Delano
FA
,
Zweifach
BW
, and
Schmid-Scho¨nbein
GW
(
1997
),
The leukocyte response to fluid stress
,
Proc. Natl. Acad. Sci. U.S.A.
94
,
5338
5343
.
99.
Sung
KLP
,
Dong
C
,
Schmid-Sho¨nbein
GW
,
Chien
S
, and
Skalak
R
(
1998
),
Leukocytes relaxation properties
,
Biophys. J.
54
,
331
336
.
100.
Evans
E
and
Yeung
A
(
1989
),
Apparent viscosity and cortical tension of blood granulocytes by micropipet aspiration
,
Biophys. J.
56
,
151
160
.
101.
Tran-Son-Tay
R
,
Needham
D
,
Yeung
A
, and
Hochmuth
RM
(
1991
),
Time-dependent recovery of passive neutrophils after large deformation
,
Biophys. J.
60
,
856
866
.
102.
Hochmuth
RM
,
Ting-Beall
HP
,
Beat
BB
,
Needham
D
, and
Tran-Son-Tay
R
(
1993
),
The viscosity of passive human neutrophils undergoing small deformations
,
Biophys. J.
64
,
1596
1601
.
103.
Yeung
A
and
Evans
E
(
1989
),
Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets
,
Biophys. J.
56
,
139
149
.
104.
Hochmuth
RM
(
1990
),
Cell biomechanics: A brief overview
,
ASME J. Biomech. Eng.
112
,
233
234
.
105.
Tsaı¨
MA
,
Frank
RS
, and
Waugh
RE
(
1993
),
Passive mechanical behavior of human neutrophils: Power-Law fluid
,
Biophys. J.
65
,
2078
2088
.
106.
Sadhal SS, Ayyaswamy PS, and Chung JN (1997), Transport Phenomena with Drops and Bubbles, Springer, New York.
107.
Stone
HA
and
Leal
LG
(
1990
),
Breakup of concentric double emulsion droplets in linear flows
,
J. Fluid Mech.
211
,
123
123
.
108.
Eggleton
CD
and
Popel
AS
(
1998
),
Large deformation of red blood cell ghosts in a simple shear flow
,
Phys. Fluids
10
,
1834
1845
.
109.
Fauci
LJ
(
1996
),
A computational model of the fluid dynamics of undulatory and flagellar swimming
,
Am. Zool.
36
(
6
),
599
607
.
110.
Bottino
DC
and
Fauci
LJ
(
1998
),
A computational model of ameboid deformation and locomotion
,
Eur. Biophys. J.
27
,
532
539
.
111.
Fauci
LJ
and
McDonald
A
(
1995
),
Sperm motility in the presence of boundaries
,
Bull. Math. Biol.
57
,
679
699
.
112.
Stone
HA
,
Bentley
BJ
, and
Leal
LG
(
1986
),
Experimental study of transient effects in the breakup of viscous drops
,
J. Fluid Mech.
173
,
131
158
.
113.
Stone
HA
and
Leal
LG
(
1989a
),
Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid
,
J. Fluid Mech.
198
,
399
399
.
114.
Stone
HA
and
Leal
LG
(
1998b
),
The influence of initial deformation on drop breakup in subcritical time-dependent flows at low Reynolds numbers
,
J. Fluid Mech.
206
,
223
263
.
115.
Dong
C
and
Skalak
R
(
1992
),
Leukocyte deformability: Finite element modeling of large viscoelastic deformation
,
J. Theor. Biol.
158
,
173
193
.
116.
Waugh R and Tsai MA (1994), Shear-rate dependence of leukocyte cytoplasmic viscosity, in Cell Mechanics and Cellular Engineering, VC Mow, F Guilak, R Tran-Son-Tay, and RM Hochmuth (eds), Springer-Verlag, New York.
117.
Rallison
JM
(
1984
),
Deformation of small viscous drops and bubbles in shear flows
,
Annu. Rev. Fluid Mech.
16
,
45
66
.
118.
Rallison
JM
and
Acrivos
A
(
1978
),
A numerical study of the deformation and burst of a liquid drop in an extensional flow
,
Annu. Rev. Fluid Mech.
89
,
191
191
.
119.
Tran-Son-Tay
R
,
Kirk
, III
T F
,
Zhelev
DV
, and
Hochmuth
RM
(
1994a
),
Numerical simulation of the flow of highly viscous drops down a tapered tube
,
ASME J. Biomech. Eng.
116
,
172
177
.
120.
Skalak
R
,
Dong
C
, and
Zhu
C
(
1990
),
Passive deformation and active motions of leukocytes
,
ASME J. Biomech. Eng.
112
,
295
302
.
121.
Long MW (1995), Tissue microenvironments, in The Biomedical Engineering Handbook, JD Bronzino (ed), CRC Press, Boca Raton FL, Ch 114, 1692–1709.
122.
Lauffenburger DA and Linderman JJ (1993), Receptors: Models for Binding, Trafficking, and Signaling, Oxford Univ Press, New York.
123.
Hammer
DA
and
Tirrell
M
(
1996
),
Biological adhesion at interfaces
,
Annu. Rev. Mater. Sci.
26
,
651
691
.
124.
Springer
TA
(
1990
),
Adhesion receptors of the immune system
,
Nature
346
,
425
434
.
125.
Kitano
T
,
Yutani
Y
,
Shimazu
A
,
Yano
I
,
Ohashi
H
, and
Yamano
Y
(
1996
),
The role of physicochemical properies of biomaterials and bacterial cell adhesion in vitro
,
Int. J. Artif. Organs
19
,
353
358
.
126.
Bell
G
,
Dembo
M
, and
Bongrand
P
(
1984
),
Cell adhesion: Competition between nonspecific repulsion and specific bonding
,
Biophys. J.
45
,
1051
1064
.
127.
Evans
EA
(
1985a
),
Detailed mechanics of membrane-membrane adhesion and separation I Continuum of molecular cross-bridges
,
Biophys. J.
48
,
175
183
.
128.
Evans
EA
(
1985b
),
Detailed mechanics of membrane-membrane adhesion and separation II Discrete kinetically trapped molecular bridges
,
Biophys. J.
48
,
185
192
.
129.
Hammer
DA
and
Lauffenburger
DA
(
1987
),
A dynamical model for receptor-mediated cell adhesion to surfaces
,
Biophys. J.
52
,
475
487
.
130.
Dembo
M
,
Torney
DC
,
Saxaman
K
, and
Hammer
D
(
1988
),
The reaction-limited kinetics of membrane-to-surface adhesion and detachment
,
Proc. R. Soc. London
234
,
55
83
.
131.
Dong
C
,
Cao
J
,
Struble
EJ
, and
Lipowsky
HH
(
1999
),
Mechanics of leukocyte deformation and adhesion to endothelium in shear flow
,
Ann. Biomed. Eng.
23
,
322
331
.
132.
Hill TL (1960), An Introduction to Statistical Thermodynamics, Addison-Wesley Publ, Reading MA.
133.
Capo
C
,
Garrouste
F
,
Benoliel
AM
,
Bongrang
P
,
Ryter
A
, and
Bell
G
(
1982
),
Concanavalin-A-mediated thymocyte agglutination: a model for a quantitative study of cell adhesion
,
J. Cell. Sci.
56
,
21
48
.
134.
Cozens-Roberts
C
,
Lauffenburger
DA
, and
Quinn
JA
(
1990
),
A receptor-mediated cell attachment and detachment kinetics; I Probabilistic model and analysis
,
Biophys. J.
58
,
841
856
.
135.
Hammer
DA
and
Apte
SM
(
1992
),
Simulation of cell rolling and adhesion on surfaces in shear flow: General results and analysis of selectin-mediated neutrophil adhesion
,
Biophys. J.
63
,
35
57
.
136.
Goldman
AJ
,
Cox
RG
, and
Brenner
H
(
1967a
),
Slow motion of a sphere parallel to a plane wall-I: Motion through a quiescent fluid
,
Chem. Eng. Sci.
22
,
637
651
.
137.
Goldman
AJ
,
Cox
RG
, and
Brenner
H
(
1967b
),
Slow motion of a sphere parallel to a plane wall-II: Couette flow
,
Chem. Eng. Sci.
22
,
653
660
.
138.
Lawrence
MB
and
Springer
TA
(
1991
),
Leukocytes roll on a selectin at physiologic flow rates: Distinction from and prerequisite for adhesion through integrins
,
Cell
65
,
859
873
.
139.
Kuo
SC
,
Hammer
DA
, and
Lauffenburger
DA
(
1997
),
Simulation of detachment of specifically bound particles from surfaces by shear flow
,
Biophys. J.
73
,
517
531
.
140.
Ward
MD
,
Dembo
M
, and
Hammer
DA
(
1995
),
Kinetics of cell detachment: effect of ligand density
,
Ann. Biomed. Eng.
23
,
322
331
.
141.
Weiss
L
(
1990
),
Metastic inefficiency
,
Adv. Cancer Res.
54
,
159
211
.
142.
N’dri N, Shyy W, Tran-Son-Tay R, and Udaykumar HS (2000), A multi-scale model for cell adhesion and deformation, Proc of ASME IMECE Conf., FED Vol 253, 205–213.
143.
Oron
A
,
Davis
SH
, and
Bankoff
SG
(
1997
),
Long-scale evolution of thin liquid films
,
Rev. Mod. Phys.
69
,
931
980
.
144.
Shyy W and Narayanan R (1999), Fluid Dynamics at Interfaces, Cambridge Univ Press, New York.
145.
Effros RM and Chang HK (1994), Fluid and Solute Transport in the Airspace of the Lungs, Marcel Dekker, New York.
146.
Secomb TW (1993), The mechanics of blood flow in capillaries, in AY Cheer, CP van Dam (eds), Fluid Dynamics in Biology, Am Math Soc, Providence RI, 519–542.
147.
Hayashi TT (1977), Mechanics of Contact Lens Motion, PhD thesis, Univ of California, Berkeley.
148.
Allaire
PE
and
Flack
RD
(
1980
),
Squeeze forces in contact lenses with steep base curve radius
,
Am. J. Optom. Physiol. Opt.
57
(
4
),
219
227
.
149.
Conway
HD
(
1982
),
The motion of a contact lens over the eye during blinking
,
Am. J. Optom. Physiol. Opt.
59
(
10
),
770
773
.
150.
Conway
HD
and
Knoll
HA
(
1986
),
Further studies of contact lens motion during blinking
,
Am. J. Optom. Physiol. Opt.
63
(
10
),
824
829
.
151.
Raad
PE
and
Sabau
AS
(
1996
),
Dynamics of a gas permeable contact lens during blinking
,
ASME J. Appl. Mech.
63
,
441
418
.
152.
Jenkins
JT
and
Shimbo
M
(
1984
),
The distribution of pressure behind a soft contact lens
,
ASME J. Appl. Mech.
106
,
62
65
.
153.
Fukenbusch
GT
and
Benson
RC
(
1996
),
The conformity of a soft contact lens on the eye
,
ASME J. Biomech. Eng.
118
,
341
348
.
154.
Martin
DK
and
Holden
BA
(
1986
),
Forces developed beneath hydrogel contact lenses due to squeeze pressure
,
Phys. Med. Biol.
6
,
635
649
.
155.
Shyy W and Smith R (1997), A study of flexible airfoil aerodynamics with application to micro aerial vehicles, AIAA-97-1933.
156.
Francois M, Shyy W, and Udaykumar HS (1999), Computational mechanics of soft contact lenses, APS Fluid Dynamics Conf, New Orleans LA.
157.
Smith
R
and
Shyy
W
(
1995
),
Computation of unsteady laminar flow over a flexible two-dimensional membrane wing
,
Phys. Fluids
7
(
9
),
2175
2184
.
158.
Smith
R W
and
Shyy
W
(
1996
),
Computation of aerodynamic coefficients for a flexible membrane airfoil in turbulent flow: A comparison with classical theory
,
Phys. Fluids
8
,
3346
3353
.
159.
Shyy
W
,
Jenkins
DA
, and
Smith
RW
(
1997
),
Study of adaptive shape airfoils at low Reynolds number in oscillatory flows
,
AIAA J.
35
,
1545
1548
.
160.
Lillberg E, Kamakoti R, and Shyy W (2000), Computation of unsteady interaction between viscous flows and flexible structure with finite inertia, AIAA 38th Aerospace Sciences Meeting and Exhibit, Paper No 2000-0142.
161.
Knutton
S
,
Sumner
MCB
, and
Pasternak
CA
(
1975
),
Role of microvilli in surface changes of synchronized P815Y mastocytoma cells
,
J. Cell Biol.
66
,
568
576
.
162.
Loor
F
and
Hagg
LB
(
1975
),
The modulation of microprojections on the lymphocyte membrane and the redistribution of membrane bound ligands, a correlation
,
Eur. J. Immunol.
6
,
854
865
.
163.
Bell
GI
(
1981
),
Estimate of the sticking probability for cells in uniform shear flow with adhesion caused by specific bonds
,
Cell Biophys.
3
,
289
304
.
164.
Evans
E
,
Berk
D
, and
Leung
L
(
1991
),
Detachment of agglutinin-bonded red blood cells I Forces to rupture molecular-point attachments
,
Biophys. J.
59
,
838
848
.
165.
Schmid-Scho¨nbein
GW
,
Fung
Y
, and
Zweifach
BW
(
1975
),
Vascular endothelium-leukocyte interactions: Sticking shear force in venules
,
Circ. Res.
36
,
173
184
.
166.
Bell
GI
(
1978
),
Models for the specific adhesion of cells to cells
,
Science
200
,
618
627
.
167.
Evans
EA
(
1983
),
Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests
,
Biophys. J.
43
,
27
30
.
168.
Conway
HD
(
1982
),
Effects of base curvature on squeeze pressures in contact lenses
,
Am. J. Optom. Physiol. Opt.
59
(
2
),
152
154
.
169.
Conway
HD
and
Richman
M
(
1982
),
Effects of contact lens deformation on tear film pressures induced during blinking
,
Am. J. Optom. Physiol. Opt.
59
(
1
),
13
20
.
170.
Conway
HD
and
Richman
MW
(
1983
),
The effects of contact lens deformation on tear film pressure and thickness during motion of the lens towards the eye
,
ASME J. Biomech. Eng.
105
,
47
50
.
SUPPLEMENTAL BIBLIOGRAPHY
1.
Halpern
D
and
Grotberg
JB
, (
1992
),
Fluid-elastic instabilities of liquid-lined flexible tubes
,
J. Fluid Mech.
244
,
615
632
.
2.
Harten
A
,
Engquist
B
,
Osher
S
, and
Chakravarthy
SR
(
1997
),
Uniformly high-order accurate essentially non-oscillatory schemes, III
,
J. Comput. Phys.
131
,
3
47
.
3.
Melton JE, Enomoto FY, and Berger MJ (1993), 3D automatic grid generation for Euler flows, AIAA 93-3386-CP.
4.
Shyy W, Thakur SS, Ouyang H, Liu J, and Blosch E (1997), Computational Techniques for Complex Transport Phenomena, Cambridge Univ Press, New York.
5.
Udaykumar HS, Tran L, Shyy W, Vanden K, and Belk DM (2000), A combined immersed interface and ENO shock capturing method for multimaterial impact dynamics, AIAA Fluids 2000 and Exhibit, Paper No AIAA-2000-2664.
6.
Vigneron P (1998), Effect of the nucleus on leukocyte deformation, Master of Science Thesis, Univ of Florida.
7.
Ward
MD
and
Hammer
DA
, (
1993
),
A theoretical analysis for the effect of focal contact formation on cell-substrate attachment strength
,
Biophys. J.
64
,
936
959
.
8.
Wilson
G
,
Schwallie
JD
, and
Bauman
RE
(
1998
),
Comparison by contact lens cytology and clinical tests of three contact lens types
,
Optom. Vision Sci.
75
(
5
),
323
329
.
You do not currently have access to this content.