Abstract

Thermally induced structural transitions in nanotubes between cylindrical and collapsed states are central to their applications in nanotechnology. Despite extensive research, the explicit determination of the critical temperature governing this phase boundary remains theoretically challenging. Here, we address this by developing a thermomechanical framework quantifying three energetic contributions: adhesion, elasticity, and configurational entropy. The model links geometric parameters (diameter, wall number) to material properties (bending stiffness, interlayer interactions), yielding an analytical formula for the critical temperature. The formula shows that the critical temperature increases steadily with diameter, approaching an asymptote set by the ratio of interlayer adhesion to entropy change and hitting zero at a critical diameter linked to the ratio of bending stiffness to adhesion. Molecular dynamics simulations for carbon nanotubes validate the framework. Our work not only deepens our fundamental understanding of nanotube thermomechanics but also furnishes a powerful predictive tool for tailoring the thermal response of nanodevices.

References

1.
Cooper
,
A.
,
1976
, “
Thermodynamic Fluctuations in Protein Molecules
,”
Proc. Natl. Acad. Sci. U. S. A.
,
73
(
8
), pp.
2740
2741
.
2.
Lu
,
H. P.
, and
Xie
,
X. S.
,
1997
, “
Single-Molecule Spectral Fluctuations at Room Temperature
,”
Nature
,
385
(
6612
), pp.
143
146
.
3.
Tshiprut
,
Z.
,
Zelner
,
S.
, and
Urbakh
,
M.
,
2009
, “
Temperature-Induced Enhancement of Nanoscale Friction
,”
Phys. Rev. Lett.
,
102
(
13
), p.
136102
.
4.
Grasinger
,
M.
, and
Sharma
,
P.
,
2024
, “
Thermal Fluctuations (Eventually) Unfold Nanoscale Origami
,”
J. Mech. Phys. Solids
,
184
, p.
105527
.
5.
Helfrich
,
W.
,
1978
, “
Steric Interaction of Fluid Membranes in Multilayer Systems
,”
Z. Naturforsch., A
,
33
(
3
), pp.
305
315
.
6.
Evans
,
E. A.
, and
Parsegian
,
V. A.
,
1986
, “
Thermal-Mechanical Fluctuations Enhance Repulsion Between Bimolecular Layers
,”
Proc. Natl. Acad. Sci. U. S. A.
,
83
(
19
), pp.
7132
7136
.
7.
Sharma
,
P.
,
2013
, “
Entropic Force Between Membranes Reexamined
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
6
), pp.
1976
1977
.
8.
Freund
,
L. B.
,
2013
, “
Entropic Pressure Between Biomembranes in a Periodic Stack Due to Thermal Fluctuations
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
6
), pp.
2047
2051
.
9.
Thompson-Flagg
,
R. C.
,
Moura
,
M. J. B.
, and
Marder
,
M.
,
2009
, “
Rippling of Graphene
,”
Europhys. Lett.
,
85
(
4
), p.
46002
.
10.
Fasolino
,
A.
,
Los
,
J. H.
, and
Katsnelson
,
M. I.
,
2007
, “
Intrinsic Ripples in Graphene
,”
Nat. Mater.
,
6
(
11
), pp.
858
861
.
11.
Braghin
,
F. L.
, and
Hasselmann
,
N.
,
2010
, “
Thermal Fluctuations of Free-Standing Graphene
,”
Phys. Rev. B
,
82
(
3
), p.
35407
.
12.
Wang
,
G.
,
Hou
,
H.
,
Yan
,
Y.
,
Jagatramka
,
R.
,
Shirsalimian
,
A.
,
Wang
,
Y.
,
Li
,
B.
,
Daly
,
M.
, and
Cao
,
C.
,
2023
, “
Recent Advances in the Mechanics of 2D Materials
,”
Int. J. Extrem. Manuf.
,
5
(
3
), p.
032002
.
13.
Gao
,
W.
, and
Huang
,
R.
,
2014
, “
Thermomechanics of Monolayer Graphene: Rippling, Thermal Expansion and Elasticity
,”
J. Mech. Phys. Solids
,
66
, pp.
42
58
.
14.
Wang
,
P.
,
Gao
,
W.
, and
Huang
,
R.
,
2016
, “
Entropic Effects of Thermal Rippling on van Der Waals Interactions Between Monolayer Graphene and a Rigid Substrate
,”
J. Appl. Phys.
,
119
(
7
), p.
074305
.
15.
Ahmadpoor
,
F.
, and
Sharma
,
P.
,
2017
, “
A Perspective on the Statistical Mechanics of 2D Materials
,”
Extreme Mech. Lett.
,
14
, pp.
38
43
.
16.
Ahmadpoor
,
F.
,
Wang
,
P.
,
Huang
,
R.
, and
Sharma
,
P.
,
2017
, “
Thermal Fluctuations and Effective Bending Stiffness of Elastic Thin Sheets and Graphene: A Nonlinear Analysis
,”
J. Mech. Phys. Solids
,
107
, pp.
294
319
.
17.
Zelisko
,
M.
,
Ahmadpoor
,
F.
,
Gao
,
H.
, and
Sharma
,
P.
,
2017
, “
Determining the Gaussian Modulus and Edge Properties of 2D Materials: From Graphene to Lipid Bilayers
,”
Phys. Rev. Lett.
,
119
(
6
), p.
68002
.
18.
Ahmadpoor
,
F.
,
Zou
,
G.
, and
Gao
,
H.
,
2022
, “
Entropic Interactions of 2D Materials With Cellular Membranes: Parallel Versus Perpendicular Approaching Modes
,”
Mech. Mater.
,
174
, p.
104414
.
19.
Chen
,
Y.
,
Ouyang
,
W.
,
Zhou
,
K.
,
Qin
,
H.
, and
Liu
,
Y.
,
2022
, “
Finite Temperature Mechanics of Multilayer 2D Materials
,”
Extreme Mech. Lett.
,
52
, p.
101612
.
20.
Guo
,
Z.
,
Chang
,
T.
,
Guo
,
X.
, and
Gao
,
H.
,
2011
, “
Thermal-Induced Edge Barriers and Forces in Interlayer Interaction of Concentric Carbon Nanotubes
,”
Phys. Rev. Lett.
,
107
(
10
), p.
105502
.
21.
Guo
,
Z.
,
Chang
,
T.
,
Guo
,
X.
, and
Gao
,
H.
,
2012
, “
Mechanics of Thermophoretic and Thermally Induced Edge Forces in Carbon Nanotube Nanodevices
,”
J. Mech. Phys. Solids
,
60
(
9
), pp.
1676
1687
.
22.
Guo
,
Z.
,
Chang
,
T.
,
Guo
,
X.
, and
Gao
,
H.
,
2017
, “
Gas-Like Adhesion of Two-Dimensional Materials Onto Solid Surfaces
,”
Sci. Rep.
,
7
(
1
), p.
159
.
23.
Zhu
,
F.
,
Leng
,
J.
,
Jiang
,
J.-W.
,
Chang
,
T.
,
Zhang
,
T.
, and
Gao
,
H.
,
2022
, “
Thermal-Fluctuation Gradient Induced Tangential Entropic Forces in Layered Two-Dimensional Materials
,”
J. Mech. Phys. Solids
,
163
, p.
104871
.
24.
Barreiro
,
A.
,
Rurali
,
R.
,
Hernández
,
E. R.
,
Moser
,
J.
,
Pichler
,
T.
,
Forró
,
L.
, and
Bachtold
,
A.
,
2008
, “
Subnanometer Motion of Cargoes Driven by Thermal Gradients Along Carbon Nanotubes
,”
Science
,
320
(
5877
), pp.
775
778
.
25.
Zambrano
,
H. A.
,
Walther
,
J. H.
,
Koumoutsakos
,
P.
, and
Sbalzarini
,
I. F.
,
2009
, “
Thermophoretic Motion of Water Nanodroplets Confined Inside Carbon Nanotubes
,”
Nano Lett.
,
9
(
1
), pp.
66
71
.
26.
Chang
,
T.
,
Zhang
,
H.
,
Guo
,
Z.
,
Guo
,
X.
, and
Gao
,
H.
,
2015
, “
Nanoscale Directional Motion Towards Regions of Stiffness
,”
Phys. Rev. Lett.
,
114
(
1
), p.
015504
.
27.
Zhu
,
F.
,
Guo
,
Z.
, and
Chang
,
T.
,
2020
, “
Nanoscale Continuous Cyclic Motion Driven by a Stable Thermal Field
,”
Appl. Mater. Today
,
18
, p.
100520
.
28.
Ruoff
,
R. S.
,
Tersoff
,
J.
,
Lorents
,
D. C.
,
Subramoney
,
S.
, and
Chan
,
B.
,
1993
, “
Radial Deformation of Carbon Nanotubes by van Der Waals Forces
,”
Nature
,
364
(
6437
), pp.
514
516
.
29.
Chopra
,
N. G.
,
Benedict
,
L. X.
,
Crespi
,
V. H.
,
Cohen
,
M. L.
,
Louie
,
S. G.
, and
Zettl
,
A.
,
1995
, “
Fully Collapsed Carbon Nanotubes
,”
Nature
,
377
(
6545
), pp.
135
138
.
30.
Pantano
,
A.
,
Parks
,
M.
, and
Boyce
,
M. C.
,
2004
, “
Mechanics of Deformation of Single- and Multi-Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
,
52
(
4
), pp.
789
821
.
31.
Tang
,
T.
,
Jagota
,
A.
,
Hui
,
C.-Y.
, and
Glassmaker
,
N. J.
,
2005
, “
Collapse of Single-Walled Carbon Nanotubes
,”
J. Appl. Phys.
,
97
(
7
), p.
074310
.
32.
Chang
,
T.
,
2008
, “
Dominoes in Carbon Nanotubes
,”
Phys. Rev. Lett.
,
101
(
17
), p.
175501
.
33.
He
,
M.
,
Dong
,
J.
,
Zhang
,
K.
,
Ding
,
F.
,
Jiang
,
H.
,
Loiseau
,
A.
,
Lehtonen
,
J.
, and
Kauppinen
,
E. I.
,
2014
, “
Precise Determination of the Threshold Diameter for a Single-Walled Carbon Nanotube To Collapse
,”
ACS Nano
,
8
(
9
), pp.
9657
9663
.
34.
He
,
M.
,
Dong
,
J.
,
Wang
,
H.
,
Xue
,
H.
,
Wu
,
Q.
,
Xin
,
B.
,
Gao
,
W.
, et al
,
2019
, “
Advance in Close-Edged Graphene Nanoribbon: Property Investigation and Structure Fabrication
,”
Small
,
15
(
29
), p.
1804473
.
35.
Senga
,
R.
,
Hirahara
,
K.
, and
Nakayama
,
Y.
,
2012
, “
Nanotorsional Actuator Using Transition Between Flattened and Tubular States in Carbon Nanotubes
,”
Appl. Phys. Lett.
,
100
(
8
), p.
083110
.
36.
Chang
,
T.
, and
Guo
,
Z.
,
2010
, “
Temperature-Induced Reversible Dominoes in Carbon Nanotubes
,”
Nano Lett.
,
10
(
9
), pp.
3490
3493
.
37.
Yi
,
L. J.
,
Zhang
,
Y. Y.
,
Wang
,
C. M.
, and
Chang
,
T. C.
,
2014
, “
Temperature-Induced Unfolding of Scrolled Graphene and Folded Graphene
,”
J. Appl. Phys.
,
115
(
20
), p.
204307
.
38.
Chen
,
Y.
,
Guo
,
Z.
, and
Chang
,
T.
,
2023
, “
Atomistic Simulations of Temperature-Induced Switchable Morphology in Graphene Nanodrum
,”
Comput. Mater. Sci.
,
222
, p.
112102
.
39.
Zhou
,
H.
,
Leng
,
J.
,
Guo
,
Z.
,
Li
,
J.
,
Huo
,
Z.
,
Qu
,
J.
, and
Chang
,
T.
,
2019
, “
Interlayer Attraction Force in Concentric Carbon Nanotubes
,”
ASME J. Appl. Mech.
,
86
(
9
), p.
091003
.
40.
Zhang
,
Y. Y.
,
Wang
,
C. M.
,
Cheng
,
Y.
, and
Xiang
,
Y.
,
2011
, “
Mechanical Properties of Bilayer Graphene Sheets Coupled by Sp3 Bonding
,”
Carbon
,
49
(
13
), pp.
4511
4517
.
41.
Barzegar
,
H. R.
,
Gracia-Espino
,
E.
,
Yan
,
A.
,
Ojeda-Aristizabal
,
C.
,
Dunn
,
G.
,
Wågberg
,
T.
, and
Zettl
,
A.
,
2015
, “
C60/Collapsed Carbon Nanotube Hybrids: A Variant of Peapods
,”
Nano Lett.
,
15
(
2
), pp.
829
834
.
42.
Tu
,
Z.
, and
Ou-Yang
,
Z.
,
2002
, “
Single-Walled and Multiwalled Carbon Nanotubes Viewed as Elastic Tubes With the Effective Young's Moduli Dependent on Layer Number
,”
Phys. Rev. B
,
65
(
23
), p.
233407
.
43.
Arroyo
,
M.
, and
Belytschko
,
T.
,
2004
, “
Finite Crystal Elasticity of Carbon Nanotubes Based on the Exponential Cauchy-Born Rule
,”
Phys. Rev. B
,
69
(
11
), p.
115415
.
44.
Lu
,
Q.
,
Arroyo
,
M.
, and
Huang
,
R.
,
2009
, “
Elastic Bending Modulus of Monolayer Graphene
,”
J. Phys. D: Appl. Phys.
,
42
(
10
), p.
102002
.
45.
Wei
,
Y.
,
Wang
,
B.
,
Wu
,
J.
,
Yang
,
R.
, and
Dunn
,
M. L.
,
2013
, “
Bending Rigidity and Gaussian Bending Stiffness of Single-Layered Graphene
,”
Nano Lett.
,
13
(
1
), pp.
26
30
.
46.
Benedict
,
L. X.
,
Chopra
,
N. G.
,
Cohen
,
M. L.
,
Zettl
,
A.
,
Louie
,
S. G.
, and
Crespi
,
V. H.
,
1998
, “
Microscopic Determination of the Interlayer Binding Energy in Graphite
,”
Chem. Phys. Lett.
,
286
(
5–6
), pp.
490
496
.
47.
Zhang
,
C.
,
Bets
,
K.
,
Lee
,
S. S.
,
Sun
,
Z.
,
Mirri
,
F.
,
Colvin
,
V. L.
,
Yakobson
,
B. I.
,
Tour
,
J. M.
, and
Hauge
,
R. H.
,
2012
, “
Closed-Edged Graphene Nanoribbons From Large-Diameter Collapsed Nanotubes
,”
ACS Nano
,
6
(
7
), pp.
6023
6032
.
48.
Xiao
,
J.
,
Liu
,
B.
,
Huang
,
Y.
,
Zuo
,
J.
,
Hwang
,
K.-C.
, and
Yu
,
M.-F.
,
2007
, “
Collapse and Stability of Single- and Multi-Wall Carbon Nanotubes
,”
Nanotechnology
,
18
(
39
), p.
395703
.
49.
Huang
,
J. Y.
,
Ding
,
F.
,
Yakobson
,
B. I.
,
Lu
,
P.
,
Qi
,
L.
, and
Li
,
J.
,
2009
, “
In Situ Observation of Graphene Sublimation and Multi-Layer Edge Reconstructions
,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
(
25
), pp.
10103
10108
.
50.
Barzegar
,
H. R.
,
Yan
,
A.
,
Coh
,
S.
,
Gracia-Espino
,
E.
,
Dunn
,
G.
,
Wågberg
,
T.
,
Louie
,
S. G.
,
Cohen
,
M. L.
, and
Zettl
,
A.
,
2016
, “
Electrostatically Driven Nanoballoon Actuator
,”
Nano Lett.
,
16
(
11
), pp.
6787
6791
.
51.
Yang
,
F.
,
Fan
,
H.
, and
Meguid
,
S. A.
,
2019
, “
Effect of Foam-Filling on Collapse Mode Transition of Thin-Walled Circular Columns Under Axial Compression: Analytical, Numerical and Experimental Studies
,”
Int. J. Mech. Sci.
,
150
, pp.
665
676
.
52.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
53.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
6472
6486
.
54.
Wang
,
G.
,
Dai
,
Z.
,
Xiao
,
J.
,
Feng
,
S.
,
Weng
,
C.
,
Liu
,
L.
,
Xu
,
Z.
,
Huang
,
R.
, and
Zhang
,
Z.
,
2019
, “
Bending of Multilayer van Der Waals Materials
,”
Phys. Rev. Lett.
,
123
(
11
), p.
116101
.
You do not currently have access to this content.