Abstract

The axial compressive deformed configurations of traditional and lightweight energy absorption thin-walled tubes are uncontrollable, while the introduction of internal and external induction grooves can control the deformed configuration at predetermined intervals to improve the stability of axial collapse. Thus, by introducing induction grooves and the concept of gradient into the design of energy-absorbing structures, an efficient energy absorber consisting of a biomimetic foam-filled diameter-gradient tube with internal and external gradient induction grooves (FD-GIG tube) is proposed. The axial compressive experiments of the FD-GIG tubes filled with density uniform foam are carried out, and the deformation-related failure modes are clearly observed. An analytical model for the axial crushing behavior of an FD-GIG tube filled with density gradient foam is established. The axial crushing behavior of FD-GIG tube filled with density gradient foam is studied analytically and numerically. The analytical average force–displacement curves of FD-GIG tubes filled with density gradient/uniform foam match well with experimental and numerical results. Increasing cone angle, density gradient factor, induction groove height factor, and induction groove depth factor can all effectively increase the specific energy absorption of the FD-GIG tube up to 81.8% maximum.

References

1.
Liu
,
Y. F.
,
Qin
,
Z. Y.
, and
Chu
,
F. L.
,
2023
, “
A Nonlinear Repeated Impact Model of Auxetic Honeycomb Structures Considering Geometric Nonlinearity and Tensile/Compressive Deformation
,”
ASME J. Appl. Mech.
,
90
(
9
), p.
091008
.
2.
Nieto-Fuentes
,
J. C.
,
Espinoza
,
J.
,
Sket
,
F.
, and
Rodríguez-Martínez
,
J. A.
,
2023
, “
High-Velocity Impact Fragmentation of Additively-Manufactured Metallic Tubes
,”
J. Mech. Phys. Solids
,
174
, p.
105248
.
3.
Yang
,
K. J.
,
Hu
,
X.
,
Pan
,
F.
,
Qiao
,
C.
,
Ding
,
B.
,
Hu
,
L.
,
Hu
,
X. Y.
,
He
,
Z. B.
, and
Chen
,
Y. L.
,
2023
, “
An On-Demand Tunable Energy Absorption System to Resolve Multi-Directional Impacts
,”
Int. J. Solids Struct.
,
271
, p.
112257
.
4.
Doshi
,
M.
, and
Ning
,
X.
,
2024
, “
Instability of Metamaterial-Based Thin Cylindrical Shells Under Axial Compression
,”
ASME J. Appl. Mech.
,
91
(
3
), p.
031009
.
5.
Liu
,
K.
,
Yu
,
Z. H.
,
Wang
,
K. Y.
, and
Jing
,
L.
,
2022
, “
Crashworthiness of Bamboo-Inspired Circular Tubes Used for the Energy Absorber of Rail Vehicles
,”
Acta Mech. Sin.
,
38
(
8
), p.
122014
.
6.
Jiang
,
B.
,
Chen
,
X. Y.
,
Yu
,
J. X.
,
Zhao
,
Y.
,
Xie
,
Z. M.
, and
Tan
,
H. F.
,
2022
, “
Energy-Absorbing Properties of Thin-Walled Square Tubes Filled With Hollow Spheres
,”
Thin Walled Struct.
,
180
, p.
109765
.
7.
Jiang
,
R. C.
,
Gu
,
Z. Y.
,
Zhang
,
T.
,
Liu
,
D. W.
,
Sun
,
H. X.
,
Pan
,
Z. K.
, and
Peng
,
D. Z.
,
2021
, “
Energy Absorption Characteristics of a CFRP-Al Hybrid Thin-Walled Circular Tube Under Axial Crushing
,”
Aerospace
,
8
(
10
), p.
279
.
8.
Hanssen
,
A.
,
Langseth
,
M.
, and
Hopperstad
,
O.
,
2000
, “
Static and Dynamic Crushing of Circular Aluminium Extrusions With Aluminium Foam Filler
,”
Int. J. Impact Eng.
,
24
(
5
), pp.
475
507
.
9.
Guden
,
M.
,
Yüksel
,
S.
,
Taşdemirci
,
A.
, and
Tanoğlu
,
M.
,
2006
, “
Effect of Aluminum Closed-Cell Foam Filling on the Quasi-Static Axial Crush Performance of Glass Fiber Reinforced Polyester Composite and Aluminum/Composite Hybrid Tubes
,”
Compos. Struct.
,
81
(
4
), pp.
480
490
.
10.
Ebrahimi
,
S.
,
Vahdatazad
,
N.
, and
Liaghat
,
G.
,
2018
, “
Experimental Characterization of the Energy Absorption of Functionally Graded Foam Filled Tubes Under Axial Crushing Loads
,”
J. Theor. Appl. Mech.
,
48
(
1
), pp.
76
89
.
11.
Yi
,
Z.
,
Si-Yuan
,
H.
,
Jia-Gui
,
L.
,
Wei
,
Z.
,
Xiao-Lu
,
G.
, and
Jin
,
Y.
,
2019
, “
Density Gradient Tailoring of Aluminum Foam-Filled Tube
,”
Compos. Struct.
,
220
, pp.
451
459
.
12.
Ying
,
L.
,
Wang
,
S. S.
,
Gao
,
T. H.
,
Dai
,
M. H.
,
Hu
,
P.
, and
Wang
,
Y. Q.
,
2023
, “
Crashworthiness Analysis and Optimization of Multi-Functional Gradient Foam-Aluminum Filled Hierarchical Thin-Walled Structures
,”
Thin Walled Struct.
,
189
, p.
110906
.
13.
Nagel
,
G.
, and
Thambiratnam
,
D.
,
2004
, “
A Numerical Study on the Impact Response and Energy Absorption of Tapered Thin-Walled Tubes
,”
Int. J. Mech. Sci.
,
46
(
2
), pp.
201
216
.
14.
Ghamarian
,
A.
,
Zarei
,
R. H.
, and
Abadi
,
T. M.
,
2011
, “
Experimental and Numerical Crashworthiness Investigation of Empty and Foam-Filled End-Capped Conical Tubes
,”
Thin Walled Struct.
,
49
(
10
), pp.
1312
1319
.
15.
Pang
,
T.
,
Li
,
Y. F.
,
Kang
,
H. H.
,
Sun
,
G. Y.
,
Fang
,
J. G.
, and
Li
,
Q.
,
2017
, “
On Functionally-Graded Crashworthy Shape of Conical Structures for Multiple Load Cases
,”
J. Mech. Sci. Technol.
,
31
(
6
), pp.
2861
2873
.
16.
Hosseinipour
,
S. J.
,
2003
, “
Mathematical Model for Thin-Walled Grooved Tubes Under Axial Compression
,”
Mater. Des.
,
24
(
6
), pp.
463
469
.
17.
Lin
,
C.
, and
Zhang
,
X. H.
,
2012
, “
A Rectangular Energy Absorbing Box With Better Energy Absorption Effect and the Study of Its Energy Absorption Factors
,”
Appl. Mech. Mater.
,
253–255
, pp.
2152
2158
.
18.
Nouri
,
D. M.
, and
Rezvani
,
M. J.
,
2012
, “
Experimental Investigation of Polymeric Foam and Grooves Effects on Crashworthiness Characteristics of Thin-Walled Conical Tubes
,”
Exp. Tech.
,
38
(
5
), pp.
54
63
.
19.
Mohammadiha
,
O.
, and
Beheshti
,
H.
,
2014
, “
Optimization of Functionally Graded Foam-Filled Conical Tubes Under Axial Impact Loading
,”
J. Mech. Sci. Technol.
,
28
(
5
), pp.
1741
1752
.
20.
Fang
,
J. G.
,
Gao
,
Y. K.
,
An
,
X. Z.
,
Sun
,
G. Y.
,
Chen
,
J. N.
, and
Li
,
Q.
,
2016
, “
Design of Transversely-Graded Foam and Wall Thickness Structures for Crashworthiness Criteria
,”
Composites, Part B
,
92
, pp.
338
349
.
21.
Amir
,
N.
,
Payman
,
G.
, and
Parisa
,
A.
,
2020
, “
Numerical Crashworthiness Analysis of a Novel Functionally Graded Foam-Filled Tube
,”
J. Sandwich Struct. Mater.
,
23
(
5
), p.
109963621990033
.
22.
Yu
,
X. H.
,
Qin
,
Q. H.
,
Zhang
,
J. X.
,
Wang
,
M. S.
,
Xiang
,
C. P.
, and
Wang
,
T. J.
,
2022
, “
Low-Velocity Impact of Density-Graded Foam-Filled Square Columns
,”
Int. J. Crashworthines
,
27
(
2
), pp.
376
389
.
23.
Chen
,
X.
,
Wang
,
W. H.
,
Jin
,
F. N.
, and
Fan
,
H. L.
,
2022
, “
Braided-Textile Reinforced Thin-Walled Conical Tubular Structures: Designing, Manufacturing and Testing
,”
Thin Walled Struct.
,
174
, p.
109121
.
24.
Gupta
,
N. K.
, and
Abbas
,
H.
,
2000
, “
Axisymmetric Axial Crushing of Thin Frusta
,”
Thin Walled Struct.
,
36
(
3
), pp.
169
179
.
25.
Yang
,
F.
,
Wang
,
M. L.
,
Hassan
,
M. T. Z.
,
Meguid
,
S. A.
, and
Hamouda
,
A. M. S.
,
2018
, “
Effect of Interfacial Friction and Fold Penetration on the Progressive Collapse of Foam-Filled Frustum Using Kinematically Admissible Model
,”
Int. J. Crashworthines
,
23
(
5
), pp.
581
592
.
26.
Meguid
,
S. A.
,
Yang
,
F.
, and
Verberne
,
P.
,
2015
, “
Progressive Collapse of Foam-Filled Conical Frustum Using Kinematically Admissible Mechanism
,”
Int. J. Impact Eng.
,
82
, pp.
25
35
.
27.
Mat
,
F.
,
Ismail
,
K. A.
,
Ahmad
,
M.
,
Sazali
,
Y.
, and
Othman
,
I.
,
2014
, “
Dynamic Axial Crushing of Empty and Foam-Filled Conical Aluminium Tubes: Experimental and Numerical Analysis
,”
Appl. Mech. Mater.
,
3237
(
566
), pp.
305
309
.
28.
Wang
,
J.
,
Sun
,
T. H.
, and
Huang
,
J.
,
2012
, “
Improved Design of Thin-Walled Square Tube for Energy Absorption
,”
Adv. Mat. Res.
,
1677
(
460
), pp.
389
392
.
29.
Salehghaffari
,
S.
,
Tajdari
,
M.
, and
Mokhtarnezhad
,
F.
,
2009
, “
The Collapse of Thick-Walled Metal Tubes With Wide External Grooves as Controllable Energy-Dissipating Devices
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
223
(
11
), pp.
2465
2480
.
30.
Hosseinipour
,
S. J.
, and
Daneshi
,
G. H.
,
2003
, “
Energy Absorption and Mean Crushing Load of Thin-Walled Grooved Tubes Under Axial Compression
,”
Thin Walled Struct.
,
41
(
1
), pp.
31
46
.
31.
Niknejad
,
A.
,
Abedi
,
M. M.
,
Liaghat
,
H. G.
, and
Nejad
,
M. Z.
,
2012
, “
Prediction of the Mean Folding Force During the Axial Compression in Foam-Filled Grooved Tubes by Theoretical Analysis
,”
Mater. Des.
,
37
, pp.
144
151
.
32.
Abedi
,
M. M.
,
Niknejad
,
A.
,
Liaghat
,
H. G.
, and
Nejad
,
M. Z.
,
2018
, “
Foam-Filled Grooved Tubes With Circular Cross Section Under Axial Compression: An Experimental Study
,”
Iran. J. Sci. Technol., Trans. Mech. Eng.
,
42
(
4
), pp.
401
413
.
33.
Yao
,
R. Y.
,
Yin
,
G. Y.
,
Hao
,
W. Q.
,
Zhao
,
Z. Y.
,
Li
,
X.
, and
Qin
,
X. L.
,
2019
, “
Axial Buckling Modes and Crashworthiness of Circular Tube With External Linear Gradient Grooves
,”
Thin Walled Struct.
,
134
, pp.
395
406
.
34.
Niu
,
H.
,
Guan
,
B.
,
Bai
,
Z. H.
,
Wang
,
Y.
, and
Zang
,
Y.
,
2022
, “
Numerical Simulation and Experimental Study of the Compressive Energy Absorption Characteristics of a Multi-layered Gradient Egg-Box Structure
,”
Strength Mater.
,
54
(
4
), pp.
747
753
.
35.
Song
,
J. F.
,
Xu
,
S. C.
,
Xu
,
L. H.
,
Zhou
,
J. F.
, and
Zou
,
M.
,
2020
, “
Experimental Study on the Crashworthiness of Bio-Inspired Aluminum Foam-Filled Tubes Under Axial Compression Loading
,”
Thin Walled Struct.
,
115
, p.
106937
.
36.
Ha
,
N. S.
,
Pham
,
T. M.
,
Hao
,
H.
, and
Lu
,
G. X.
,
2021
, “
Energy Absorption Characteristics of Bio-Inspired Hierarchical Multi-cell Square Tubes Under Axial Crushing
,”
Int. J. Mech. Sci.
,
201
, p.
106464
.
37.
Liu
,
Y. S.
,
Qi
,
Y. S.
,
Xu
,
L. H.
,
Han
,
N.
,
Zou
,
M.
, and
Zhang
,
Q.
,
2022
, “
Study on Energy Absorption Behaviour of Bionic Tube Inspired by Feather Shaft of Bean Goose
,”
Rend. Lincei Sci. Fis. Nat.
,
33
(
2
), pp.
1
12
.
38.
Visual China Group
,
2024
, “Bone Diagram,” https://www.vcg.com/creative/1402130039, Accessed June 21, 2024.
39.
Visual China Group
,
2024
, “Compact, Spongy (Cancellous) Bone, Cross-Section of Long Bones,” https://www.vcg.com/creative/1316972553, Accessed June 21, 2024.
40.
Visual China Group
,
2024
, “X-ray Images of Human Thighs, Knees and Feet,” https://www.vcg.com/creative/1392226569, Accessed June 21, 2024.
41.
Romanovskaya
,
A. N.
,
Zuev
,
Y. S.
, and
Khotimskii
,
M. N.
,
1985
, “
Shock-Absorbing Properties of Certain Tissues and Structures of the Supporting Apparatus of Mammals
,”
Mech. Compos. Mater.
,
21
(
5
), pp.
635
639
.
42.
Kueh
,
A. B. H.
, and
Siaw
,
Y. Y.
,
2021
, “
Impact Resistance of Bio-Inspired Sandwich Beam With Side-Arched and Honeycomb Dual-Core
,”
Compos. Struct.
,
275
, p.
114439
.
43.
Wang
,
C. Y.
,
Li
,
Y. L.
,
Zhao
,
W. Z.
,
Zou
,
S. C.
,
Zhou
,
G.
, and
Wang
,
Y. L.
,
2018
, “
Structure Design and Multi-objective Optimization of a Novel Crash Box Based on Biomimetic Structure
,”
Int. J. Mech. Sci.
,
138–139
, pp.
489
501
.
44.
Liang
,
H. Y.
,
Liu
,
B. C.
,
Pu
,
Y. F.
,
Sun
,
H.
, and
Wang
,
D. F.
,
2024
, “
Crashworthiness Analysis of Variable Thickness CFRP/Al Hybrid Multi-cell Tube
,”
Int. J. Mech. Sci.
,
266
, p.
108959
.
45.
Li
,
Q. M.
,
Magkiriadis
,
I.
, and
Harrigan
,
J. J.
,
2006
, “
Compressive Strain at the Onset of Densification of Cellular Solids
,”
J. Cell. Plast.
,
42
(
5
), pp.
371
392
.
46.
Langseth
,
M.
,
Hopperstad
,
O. S.
, and
Hanssen
,
A. G.
,
1998
, “
Crash Behaviour of Thin-Walled Aluminium Members
,”
Thin Walled Struct.
,
32
(
1–3
), pp.
127
150
.
47.
Hosseini
,
M.
,
Abbas
,
H.
, and
Gupta
,
N.
,
2008
, “
Change in Thickness in Straight Fold Models for Axial Crushing of Thin-Walled Frusta and Tubes
,”
Thin Walled Struct.
,
47
(
1
), pp.
98
108
.
48.
Abramowicz
,
W.
, and
Jones
,
N.
,
1984
, “
Dynamic Axial Crushing of Circular Tubes
,”
Int. J. Impact Eng.
,
2
(
3
), pp.
263
281
.
49.
Yu
,
X. H.
,
Qin
,
Q. H.
,
Zhang
,
J. X.
,
He
,
S. Y.
,
Xiang
,
C. P.
,
Wang
,
M. S.
, and
Wang
,
T. J.
,
2018
, “
Crushing and Energy Absorption of Density-Graded Foam-Filled Square Columns: Experimental and Theoretical Investigations
,”
Compos. Struct.
,
201
, pp.
423
433
.
50.
Deshpande
,
V.
, and
Fleck
,
N.
,
2000
, “
Isotropic Constitutive Models for Metallic Foams
,”
J. Mech. Phys. Solids
,
48
(
6
), pp.
1253
1283
.
51.
Wu
,
X. W.
, and
Zhang
,
J. X.
,
2023
, “
Axial Crushing Behaviors of Metal Density Gradient Foam-Filled Square Taper Tubes: Analytical Model and Numerical Calculation
,”
ASME J. Appl. Mech.
,
90
(
9
), p.
091007
.
52.
Zhang
,
J.
,
Lin
,
Z.
,
Wong
,
A.
,
Kikuchi
,
N.
,
Li
,
V. C.
,
Yee
,
A. F.
, and
Nusholtz
,
G. S.
,
1997
, “
Constitutive Modeling and Material Characterization of Polymeric Foams
,”
ASME J. Eng. Mater. Technol.
,
119
(
3
), pp.
284
291
.
53.
Zhang
,
J. X.
,
Qin
,
Q. H.
, and
Wang
,
T. J.
,
2013
, “
Compressive Strengths and Dynamic Response of Corrugated Metal Sandwich Plates With Unfilled and Foam-Filled Sinusoidal Plate Cores
,”
Acta. Mech.
,
224
(
4
), pp.
759
775
.
You do not currently have access to this content.