Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Understanding peeling behavior in soft materials is integral to diverse applications, from tissue engineering, wound care, and drug delivery to electronics, automotive, and aerospace equipment. These applications often require either strong, permanent adhesion or moderate, temporary adhesion for ease of removal or transfer. Soft adhesives, especially when applied on soft substrates like elastomer-coated release liners, flexible packaging films, or human skin, present unique mechanical behaviors compared to adhesives applied on rigid substrates. This difference highlights the need to understand the influence of substrate rigidity on peeling mechanics. This review delves into both energy- and stress-based analyses, where a thin tape with an adhesive layer is modeled as a flexible beam. The energy analysis encompasses components like the energy associated with tape deformation, kinetic energy, and energy lost due to interfacial slippage. The stress analysis, on the other hand, focuses on structures with thin, deformable substrates. Substrates are categorized into two types: those undergoing smaller deformations, typical of thin soft release liners, and thicker deformable substrates experiencing significant deformations. For substrates with small deformations, the linear Euler–Bernoulli beam theory is applied to the tape in the bonded region. Conversely, for substrates experiencing significant deformations, large deflection theory is utilized. These theoretical approaches are then linked to several practical, industrially relevant applications. The discussion provides a strategic guide to selecting the appropriate peeling theory for a system, emphasizing its utility in comprehending peeling mechanisms and informing system design. The review concludes with prospective research avenues in this domain.

References

1.
Kendall
,
K.
,
1971
, “
The Adhesion and Surface Energy of Elastic Solids
,”
J. Phys. D: Appl. Phys.
,
4
(
8
), pp.
1186
1195
.
2.
Pesika
,
N. S.
,
Tian
,
Y.
,
Zhao
,
B. X.
,
Rosenberg
,
K.
,
Zeng
,
H. B.
,
McGuiggan
,
M. P.
,
Autumn
,
K.
, and
Israelachvili
,
J.
,
2007
, “
Peel-Zone Model of Tape Peeling Based on the Gecko Adhesive System
,”
J. Adhes.
,
83
(
4
), pp.
383
401
.
3.
Rivlin
,
R. S.
,
1944
, “
The Effective Work of Adhesion
,”
Paint Tech.
,
9
(
106
), pp.
215
218
.
4.
Moidu
,
A. K.
,
Sinclair
,
A. N.
, and
Spelt
,
J. K.
,
1995
, “
Analysis of the Peel Test—Prediction of Adherend Plastic Dissipation and Extraction of Fracture Energy in Metal-to-Metal Adhesive Joints
,”
J. Test. Eval.
,
23
(
4
), pp.
241
253
.
5.
Moidu
,
A. K.
,
Sinclair
,
A. N.
, and
Spelt
,
J. K.
,
1998
, “
On the Determination of Fracture Energy Using the Peel Test
,”
J. Test. Eval.
,
26
(
3
), pp.
247
254
.
6.
Chen
,
B.
,
Wu
,
P.
, and
Gao
,
H.
,
2009
, “
Pre-tension Generates Strongly Reversible Adhesion of a Spatula Pad on Substrate
,”
J. R. Soc. Interface
,
6
(
35
), pp.
529
537
.
7.
Tian
,
Y.
,
Pesika
,
N.
,
Zeng
,
H.
,
Rosenberg
,
K.
,
Zhao
,
B.
,
McGuiggan
,
P.
,
Autumn
,
K.
, and
Israelachvili
,
J.
,
2006
, “
Adhesion and Friction in Gecko Toe Attachment and Detachment
,”
Proc. Natl. Acad. Sci. USA
,
103
(
51
), pp.
19320
19325
.
8.
Ceglie
,
M.
,
Menga
,
N.
, and
Carbone
,
G.
,
2022
, “
The Role of Interfacial Friction on the Peeling of Thin Viscoelastic Tapes
,”
J. Mech. Phys. Solids
,
159
, pp.
1
9
.
9.
Thouless
,
M. D.
, and
Yang
,
Q. D.
,
2008
, “
A Parametric Study of the Peel Test
,”
Int. J. Adhes. Adhes.
,
28
(
4–5
), pp.
176
184
.
10.
Sauer
,
R. A.
,
2011
, “
The Peeling Behavior of Thin Films With Finite Bending Stiffness and the Implications on Gecko Adhesion
,”
J. Adhes.
,
87
(
7–8
), pp.
624
643
.
11.
12.
Eley
,
R. R.
, and
Petrash
,
S.
,
2006
, “Surface Energetics of Polymers and Rubbers, Characterization of,”
Encyclopedia of Analytical Chemistry
,
John Wiley & Sons, Ltd
,
Hoboken, NJ
, pp.
1
15
.
13.
Sun
,
S.
,
Li
,
M.
, and
Liu
,
A.
,
2013
, “
A Review on Mechanical Properties of Pressure Sensitive Adhesives
,”
Int. J. Adhes. Adhes.
,
41
(
1
), pp.
98
106
.
14.
Park
,
K.
, and
Paulino
,
G. H.
,
2011
, “
Cohesive Zone Models: A Critical Review of Traction-Separation Relationships Across Fracture Surfaces
,”
ASME Appl. Mech. Rev.
,
64
(
6
), p.
060802
.
15.
Needleman
,
A.
,
2014
, “
Some Issues in Cohesive Surface Modeling
,”
Mechanics for the World: Proceedings of the 23rd International Congress of Theoretical and Applied Mechanics, ICTAM2012, 10
,
Beijing, China
,
Aug. 19–24, 2012
, pp.
221
246
.
16.
Wciślik
,
W.
, and
Pała
,
T.
,
2021
, “
Selected Aspects of Cohesive Zone Modeling in Fracture Mechanics
,”
Metals
,
11
(
2
), p.
302
.
17.
Sauer
,
R. A.
,
2015
, “
A Survey of Computational Models for Adhesion
,”
J. Adhes.
,
92
(
2
), pp.
81
120
.
18.
Gu
,
Z.
,
Li
,
S.
,
Zhang
,
F.
, and
Wang
,
S.
,
2016
, “
Understanding Surface Adhesion in Nature: A Peeling Model
,”
Adv. Sci.
,
3
(
7
), p.
1500327
.
19.
Bartlett
,
M. D.
,
Case
,
S. W.
,
Kinloch
,
A. J.
, and
Dillard
,
D. A.
,
2023
, “
Peel Tests for Quantifying Adhesion and Toughness: A Review
,”
Prog. Mater. Sci.
,
137
, pp.
1
133
.
20.
Kinloch
,
A. J.
,
Lau
,
C. C.
, and
Williams
,
J. G.
,
1994
, “
The Peeling of Flexible Laminates
,”
Int. J. Fract.
,
66
(
1
), pp.
45
70
.
21.
Suo
,
Z.
, and
Hutchinson
,
J. W.
,
1990
, “
Interface Crack Between Two Elastic Layers
,”
Int. J. Fract.
,
43
(
1
), pp.
1
18
.
22.
Hutchinson
,
J. W.
, and
Suo
,
Z.
,
1991
, “
Mixed Mode Cracking in Layered Materials
,”
Adv. Appl. Mech.
,
29
(
1
), pp.
63
191
.
23.
Thouless
,
M. D.
, and
Jensen
,
H. M.
,
1992
, “
Elastic Fracture-Mechanics of the Peel-Test Geometry
,”
J. Adhes.
,
38
(
3–4
), pp.
185
197
.
24.
Lu
,
Z. X.
,
Yu
,
S. W.
,
Wang
,
X. Y.
, and
Feng
,
X. Q.
,
2007
, “
Effect of Interfacial Slippage in Peel Test: Theoretical Model
,”
Eur. Phys. J. E
,
23
(
1
), pp.
67
76
.
25.
Kaelble
,
D. H.
,
1959
, “
Theory and Analysis of Peel Adhesion—Mechanisms and Mechanics
,”
Trans. Soc. Rheol.
,
3
(
1
), pp.
161
180
.
26.
Ghatak
,
A.
,
2010
, “
Peeling Off an Adhesive Layer With Spatially Varying Modulus
,”
Phys. Rev. E
,
81
(
2
), p.
021603
.
27.
Kendall
,
K.
,
1975
, “
Thin-Film Peeling—The Elastic Term
,”
J. Phys. D: Appl. Phys.
,
8
(
13
), pp.
1449
1452
.
28.
Kendall
,
K.
,
1975
, “
Transition Between Cohesive and Interfacial Failure in a Laminate
,”
Proc. R. Soc. London Ser., A
,
344
(
1637
), pp.
287
302
.
29.
Anderson
,
G. P.
,
DeVries
,
K. L.
, and
Williams
,
M. L.
,
1976
, “
The Peel Test in Experimental Adhesive-Fracture Mechanics
,”
Exp. Mech.
,
16
(
1
), pp.
11
15
.
30.
Kim
,
K. S.
, and
Aravas
,
N.
,
1988
, “
Elastoplastic Analysis of the Peel Test
,”
Int. J. Solids Struct.
,
24
(
4
), pp.
417
435
.
31.
Tsai
,
K.-H.
, and
Kim
,
K.-S.
,
1993
, “
Stick-Slip in the Thin Film Peel Test—I. The 90 Peel Test
,”
Int. J. Solids Struct.
,
30
(
13
), pp.
1789
1806
.
32.
He
,
L.
,
Lou
,
J.
,
Kitipornchai
,
S.
,
Yang
,
J.
, and
Du
,
J.
,
2019
, “
Peeling Mechanics of Hyperelastic Beams: Bending Effect
,”
Int. J. Solids Struct.
,
167
(
1
), pp.
184
191
.
33.
Chen
,
H.
,
Feng
,
X.
,
Huang
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2013
, “
Experiments and Viscoelastic Analysis of Peel Test With Patterned Strips for Applications to Transfer Printing
,”
J. Mech. Phys. Solids
,
61
(
8
), pp.
1737
1752
.
34.
Pierro
,
E.
,
Afferrante
,
L.
, and
Carbone
,
G.
,
2020
, “
On the Peeling of Elastic Tapes From Viscoelastic Substrates: Designing Materials for Ultratough Peeling
,”
Tribol. Int.
,
146
(
9
), p.
106060
.
35.
Peng
,
Z.
, and
Chen
,
S.
,
2015
, “
Effect of Bending Stiffness on the Peeling Behavior of an Elastic Thin Film on a Rigid Substrate
,”
Phys. Rev. E
,
91
(
4
), p.
042401
.
36.
Williams
,
J. G.
,
Hadavinia
,
H.
, and
Cotterell
,
B.
,
2005
, “
Anisotropic Elastic and Elastic-Plastic Bending Solutions for Edge Constrained Beams
,”
Int. J. Solids Struct.
,
42
(
18–19
), pp.
4927
4946
.
37.
Kawashita
,
L. F.
,
2006
, “
The Peeling of Adhesive Joints
,”
Ph.D. thesis
,
University of London
,
London
.
39.
Kinloch
,
A.
, and
Williams
,
J.
,
2002
, “
The Mechanics of Peel Tests
,”
Adhes. Sci. Eng.
,
1
(
8
), pp.
273
301
.
40.
Zhang Newby
,
B.
, and
Chaudhury
,
M. K.
,
1997
, “
Effect of Interfacial Slippage on Viscoelastic Adhesion
,”
Langmuir
,
13
(
6
), pp.
1805
1809
.
41.
Ghatak
,
A.
,
Vorvolakos
,
K.
,
She
,
H.
,
Malotky
,
D. L.
, and
Chaudhury
,
M. K.
,
2000
, “
Interfacial Rate Processes in Adhesion and Friction
,”
J. Phys. Chem. B
,
104
(
17
), pp.
4018
4030
.
42.
Raphael
,
E.
, and
De Gennes
,
P. G.
,
1992
, “
Rubber-Rubber Adhesion With Connector Molecules
,”
J. Phys. Chem.
,
96
(
10
), pp.
4002
4007
.
43.
Brochard-Wyart
,
F.
,
De Gennes
,
P. G.
,
Leger
,
L.
,
Marciano
,
Y.
, and
Raphael
,
E.
,
1994
, “
Adhesion Promoters
,”
J. Phys. Chem.
,
98
(
38
), pp.
9405
9410
.
44.
Creton
,
C.
,
Brown
,
H. R.
, and
Shull
,
K. R.
,
1994
, “
Molecular Weight Effects in Chain Pullout
,”
Macromolecules
,
27
(
12
), pp.
3174
3183
.
45.
Gaire
,
B.
,
Wilson
,
M. C.
,
Singla
,
S.
, and
Dhinojwala
,
A.
,
2022
, “
Connection Between Molecular Interactions and Mechanical Work of Adhesion
,”
ACS Macro Lett.
,
11
(
11
), pp.
1285
1290
.
46.
Owens
,
D. K.
, and
Wendt
,
R. C.
,
1969
, “
Estimation of the Surface Free Energy of Polymers
,”
J. Appl. Polym. Sci.
,
13
(
8
), pp.
1741
1747
.
47.
Gent
,
A. N.
, and
Schultz
,
J.
,
1972
, “
Effect of Wetting Liquids on the Strength of Adhesion of Viscoelastic Material
,”
J. Adhes.
,
3
(
4
), pp.
281
294
.
48.
Andrews
,
E.
, and
Kinloch
,
A. J.
,
1973
, “
Mechanics of Adhesive Failure. II
,”
Proc. R. Soc. London. A
,
332
(
1590
), pp.
401
414
.
49.
Benyahia
,
L.
,
Verdier
,
C.
, and
Piau
,
J.-M.
,
1997
, “
The Mechanisms of Peeling of Uncross-Linked Pressure Sensitive Adhesives
,”
J. Adhes.
,
62
(
1–4
), pp.
45
73
.
50.
Du
,
J.
,
Lindeman
,
D. D.
, and
Yarusso
,
D. J.
,
2004
, “
Modeling the Peel Performance of Pressure-Sensitive Adhesives
,”
J. Adhes.
,
80
(
7
), pp.
601
612
.
51.
Saulnier
,
F.
,
Ondarcuhu
,
T.
,
Aradian
,
A.
, and
Raphael
,
E.
,
2004
, “
Adhesion Between a Viscoelastic Material and a Solid Surface
,”
Macromolecules
,
37
(
3
), pp.
1067
1075
.
52.
de Gennes
,
P. G.
,
1996
, “
Soft Adhesives
,”
Langmuir
,
12
(
19
), pp.
4497
4500
.
53.
Maugis
,
D.
, and
Barquins
,
M.
,
1978
, “
Fracture Mechanics and the Adherence of Viscoelastic Bodies
,”
J. Phys. D: Appl. Phys.
,
11
(
14
), pp.
1989
2023
.
54.
Peng
,
Z. L.
,
Wang
,
C.
,
Chen
,
L.
, and
Chen
,
S. H.
,
2014
, “
Peeling Behavior of a Viscoelastic Thin-Film on a Rigid Substrate
,”
Int. J. Solids Struct.
,
51
(
1
), pp.
4596
4603
.
55.
Zhu
,
Z. M.
,
Yang
,
Z. R.
,
Xia
,
Y.
, and
Jiang
,
H.
,
2021
, “
Controllable Peeling of an Elastic Strip on a Viscoelastic Substrate
,”
Eng. Fract. Mech.
,
256
, pp.
1
13
.
56.
Chaudhury
,
M. K.
,
1999
, “
Rate-Dependent Fracture at Adhesive Interface
,”
J. Phys. Chem. B
,
103
(
31
), pp.
6562
6566
.
57.
Song
,
Z.
,
Shen
,
T.
,
Vernerey
,
F. J.
, and
Cai
,
S.
,
2021
, “
Force-Dependent Bond Dissociation Explains the Rate-Dependent Fracture of Vitrimers
,”
Soft Matter
,
1
(
27
), pp.
6669
6674
.
58.
Afferrante
,
L.
, and
Carbone
,
G.
,
2016
, “
The Ultratough Peeling of Elastic Tapes From Viscoelastic Substrates
,”
J. Mech. Phys. Solids
,
96
(
3
), pp.
223
234
.
59.
Menga
,
N.
,
Afferrante
,
L.
,
Pugno
,
N. M.
, and
Carbone
,
G.
,
2018
, “
The Multiple V-Shaped Double Peeling of Elastic Thin Films From Elastic Soft Substrates
,”
J. Mech. Phys. Solids
,
113
(
1
), pp.
56
64
.
60.
Ciavarella
,
M.
,
McMeeking
,
R. M.
, and
Cricrì
,
G.
,
2021
, “
On the Afferrante-Carbone Theory of Ultratough Tape Peeling
,”
FU Mech. Eng.
,
21
(
4
), pp.
727
735
.
61.
Carbone
,
G.
, and
Mangialardi
,
L.
,
2008
, “
Analysis of the Adhesive Contact of Confined Layers by Using a Green's Function Approach
,”
J. Mech. Phys. Solids
,
56
(
2
), pp.
684
706
.
62.
Perrin
,
H.
,
Eddi
,
A.
,
Karpitschka
,
S.
,
Snoeijer
,
J. H.
, and
Andreotti
,
B.
,
2019
, “
Peeling an Elastic Film From a Soft Viscoelastic Adhesive: Experiments and Scaling Laws
,”
Soft Matter
,
15
(
4
), pp.
770
778
.
63.
Lavoie
,
S. R.
,
Long
,
R.
, and
Tang
,
T.
,
2015
, “
Rate Dependent Fracture of a Double Cantilever Beam With Combined Bulk and Interfacial Dissipation
,”
Int. J. Solids Struct.
,
75–76
(
1
), pp.
277
286
.
64.
Spies
,
G.
,
1953
, “
The Peeling Test on Redux-Bonded Joints: A Theoretical Analysis of the Test Devised by Aero Research Limited
,”
Aircraft Eng. Aerosp. Technol
,
25
(
3
), pp.
64
70
.
65.
Bikerman
,
J. J.
,
1957
, “
Theory of Peeling Through a Hookean Solid
,”
ASME J. Appl. Phys.
,
28
(
12
), pp.
1484
1485
.
66.
Kaelble
,
D. H.
,
1960
, “
Theory and Analysis of Peel Adhesion—Bond Stresses and Distributions
,”
Trans. Soc. Rheol.
,
4
(
1
), pp.
45
73
.
67.
Dillard
,
D. A.
,
1989
, “
Bending of Plates on Thin Elastomeric Foundations
,”
ASME J. Appl. Mech.
,
56
(
2
), pp.
382
386
.
68.
Plaut
,
R. H.
,
Hwang
,
D.
,
Lee
,
C.
,
Bartlett
,
M. D.
, and
Dillard
,
D. A.
,
2022
, “
Peeling of Finite-Length Elastica on Winkler Foundation Until Complete Detachment
,”
Int. J. Solids Struct.
,
256
, pp.
1
14
.
69.
Plaut
,
R. H.
, and
Dillard
,
D.
,
2023
, “
Peeling of Finite-Length Plates From an Elastomeric Foundation: A 1-D Cylindrical Bending Solution
,”
ASME J. Appl. Mech.
,
90
(
9
), p.
091001
.
70.
Ghatak
,
A.
,
Mahadevan
,
L.
, and
Chaudhury
,
M. K.
,
2005
, “
Measuring the Work of Adhesion Between a Soft Confined Film and a Flexible Plate
,”
Langmuir
,
21
(
4
), pp.
1277
1281
.
71.
Ghatak
,
A.
,
2011
, “
Mechanics of Peeling of a Flexible Adherent Off a Thin Layer of Adhesive
,”
Mechanics over Micro and Nano Scales
,
Springer
,
New York
, pp.
171
191
.
72.
Mukherjee
,
B.
,
Dillard
,
D. A.
,
Moore
,
R. B.
, and
Batra
,
R. C.
,
2016
, “
Debonding of Confined Elastomeric Layer Using Cohesive Zone Model
,”
Int. J. Adhes. Adhes.
,
66
(
1
), pp.
114
127
.
73.
Kaelble
,
D. H.
,
1964
, “
Theory and Analysis of Peel Adhesion: Rate-Temperature Dependence of Viscoelastic Interlayers
,”
J. Colloid Sci.
,
19
(
5
), pp.
413
424
.
74.
Kaelble
,
D. H.
,
1965
, “
Peel Adhesion: Micro-Fracture Mechanics of Interfacial Unbonding of Polymers
,”
Trans. Soc. Rheol.
,
9
(
2
), pp.
135
163
.
75.
Derail
,
C.
,
Allal
,
A.
,
Marin
,
G.
, and
Tordjeman
,
P.
,
1997
, “
Relationship Between Viscoelastic and Peeling Properties of Model Adhesives. Part 1. Cohesive Fracture
,”
J. Adhes.
,
61
(
1–4
), pp.
123
157
.
76.
Derail
,
C.
,
Allal
,
A.
,
Marin
,
G.
, and
Tordjeman
,
P.
,
1998
, “
Relationship Between Viscoelastic and Peeling Properties of Model Adhesives. Part 2. The Interfacial Fracture Domains
,”
J. Adhes
,
68
(
3–4
), pp.
203
228
.
77.
Li
,
Y.
,
Pesika
,
N. S.
,
Zhou
,
M.
, and
Tian
,
Y.
,
2018
, “
Spring Contact Model of Tape Peeling: A Combination of the Peel-Zone Approach and the Kendall Approach
,”
Front. Mech. Eng.
,
4
(
22
), pp.
1
11
.
78.
Gent
,
A. N.
, and
Hamed
,
G. R.
,
1975
, “
Peel Mechanics
,”
J. Adhes.
,
7
(
2
), pp.
91
95
.
79.
Gent
,
A. N.
, and
Hamed
,
G. R.
,
1977
, “
Peel Mechanics of Adhesive Joints
,”
Polym. Eng. Sci.
,
17
(
7
), pp.
462
466
.
80.
Kaelble
,
D. H.
, and
Reylek
,
R. S.
,
1969
, “
Peel Adhesion—Rate Dependence of Micro Fracture Processes
,”
J. Adhes.
,
1
(
2
), pp.
124
135
.
81.
Chen
,
W. T.
, and
Flavin
,
T. F.
,
1972
, “
Mechanics of Film Adhesion—Elastic and Elastic-Plastic Behavior
,”
IBM J. Res. Dev.
,
16
(
3
), p.
203
.
82.
Kim
,
K.-S.
, and
Aravas
,
N.
,
1988
, “
Elasto-PIastic Analysis of the Peel Test for Thin Film Adhesion
,”
Int. J. Solids Struct.
,
24
(
4
), pp.
417
435
.
83.
Villey
,
R.
,
Creton
,
C.
,
Cortet
,
P.-P.
,
Dalbe
,
M.-J.
,
Jet
,
T.
,
Saintyves
,
B.
,
Santucci
,
S.
,
Vanel
,
L.
,
Yarusso
,
D. J.
, and
Ciccotti
,
M.
,
2015
, “
Rate-Dependent Elastic Hysteresis During the Peeling of Pressure Sensitive Adhesives
,”
Soft Matter
,
11
(
17
), pp.
3480
3491
.
84.
He
,
Y. F.
,
Wan
,
X. D.
,
Chen
,
Y. J.
, and
Yang
,
C. H.
,
2021
, “
Enhance the Debonding Resistance of Hydrogel by Large-Scale Bridging
,”
J. Mech. Phys. Solids
,
155
, pp.
1
16
.
85.
Niesiolowski
,
F.
, and
Aubrey
,
D. W.
,
1981
, “
Stress-Distribution During Peeling of Adhesive Tapes
,”
J. Adhes.
,
13
(
1
), pp.
87
98
.
86.
Karwoski
,
A. C.
,
2003
,
Testing and Analysis of the Peeling of Medical Adhesives From Human Skin
,
Virginia Tech
,
Blacksburg, VA
.
87.
Plaut
,
R. H.
,
2010
, “
Two-Dimensional Analysis of Peeling Adhesive Tape From Human Skin
,”
J. Adhes.
,
86
(
11
), pp.
1086
1110
.
88.
Zhang
,
L.
, and
Wang
,
J.
,
2009
, “
A Generalized Cohesive Zone Model of the Peel Test for Pressure-Sensitive Adhesives
,”
Int. J. Adhes. Adhes.
,
29
(
3
), pp.
217
224
.
89.
Poulard
,
C.
,
Restagno
,
F.
,
Weil
,
R.
, and
Leger
,
L.
,
2011
, “
Mechanical Tuning of Adhesion Through Micro-Patterning of Elastic Surfaces
,”
Soft Matter
,
7
(
6
), pp.
2543
2551
.
90.
Gent
,
A. N.
, and
Lindley
,
P. B.
,
1959
, “
Internal Rupture of Bonded Rubber Cylinders in Tension
,”
Proc. R. Soc. London Ser., A
,
249
(
1257
), pp.
195
205
.
91.
Shen
,
C. S.
,
Wang
,
H. F.
, and
Du
,
C. L.
,
2022
, “
Peeling of a Film From a Flexible Cantilever Substrate
,”
Mech. Res. Commun.
,
119
, pp.
1
10
.
92.
Roop
,
R. V.
,
Plaut
,
R. H.
,
Dillard
,
D. A.
, and
Ohanehi
,
D. C.
,
2002
, “
Peeling Pressure-Sensitive Adhesive Tape From Initially-Slack Thin Solid Film
,”
Proceedings of the 25th Annual Meeting of the Adhesion Society and the Second World Congress on Adhesion and Related Phenomena (WCARP-II)
,
Orlando, FL
,
Feb. 10–14
, pp.
129
131
.
93.
Steven-Fountain
,
A. J.
,
Atkins
,
A. G.
,
Jeronimidis
,
G.
,
Vincent
,
J. F. V.
,
Farrar
,
D. F.
, and
Chivers
,
R. A.
,
2002
, “
The Effect of Flexible Substrates on Pressure-Sensitive Adhesive Performance
,”
Int. J. Adhes. Adhes.
,
22
(
6
), pp.
423
430
.
94.
Plaut
,
R. H.
,
2010
, “
Peeling Pressure-Sensitive Adhesive Tape From Thin Elastic Strip
,”
J. Adhes.
,
86
(
7
), pp.
675
697
.
95.
Loukis
,
M. J.
, and
Aravas
,
N.
,
1991
, “
The Effects of Viscoelasticity in the Peeling of Polymeric Films
,”
J. Adhes.
,
35
(
1
), pp.
7
22
.
96.
Christensen
,
S. F.
, and
McKinley
,
G. H.
,
1998
, “
Rheological Modelling of the Peeling of Pressure-Sensitive Adhesives and Other Elastomers
,”
Int. J. Adhes. Adhes.
,
18
(
5
), pp.
333
343
.
97.
Afferrante
,
L.
,
Carbone
,
G.
,
Demelio
,
G.
, and
Pugno
,
N.
,
2013
, “
Adhesion of Elastic Thin Films: Double Peeling of Tapes Versus Axisymmetric Peeling of Membranes
,”
Tribol. Lett.
,
52
(
3
), pp.
439
447
.
98.
Zhu
,
Z. M.
,
Xia
,
Y.
,
Jiang
,
C. K.
,
Yang
,
Z. R.
, and
Jiang
,
H.
,
2021
, “
Investigation of Zero-Degree Peeling Behavior of Visco-Hyperelastic Highly Stretchable Adhesive Tape on Rigid Substrate
,”
Eng. Fract. Mech.
,
241
, pp.
1
12
.
99.
Ceglie
,
M.
,
Menga
,
N.
, and
Carbone
,
G.
,
2024
, “
Modelling the Non-Steady Peeling of Viscoelastic Tapes
,”
Int. J. Mech. Sci.
,
267
, pp.
1
10
.
100.
He
,
L.
,
Lou
,
J.
,
Chen
,
J.
,
Zhang
,
A.
, and
Yang
,
J.
,
2018
, “
An Adhesion Model for Plane-Strain Shearable Hyperelastic Beams
,”
Mech. Res. Commun.
,
90
(
1
), pp.
42
46
.
101.
Creton
,
C.
,
2003
, “
Pressure-Sensitive Adhesives: An Introductory Course
,”
MRS Bull.
,
28
(
6
), pp.
434
439
.
102.
Creton
,
C.
, and
Ciccotti
,
M.
,
2016
, “
Fracture and Adhesion of Soft Materials: A Review
,”
Rep. Prog. Phys.
,
79
(
4
), p.
046601
.
103.
Bekemeier
,
T.
,
Steve
,
C.
,
Dehlin
,
L.
,
Mitchell
,
T.
,
Ng
,
S.-S.
, and
Rich
,
D.
,
2020
, “Additive Organopolysiloxane Composition, Curable Composition, and Film,” U. S. Patent No. US20230192960A1.
104.
Dehlin
,
L.
,
Ferritto
,
M.
,
Mitchell
,
T.
,
Ng
,
S.-S.
,
Proffit
,
D.
,
Schmidt
,
R. G.
, et al
,
2022
, “Silicone Release Coating Composition and Methods for the Preparation and Use of Same,” U. S. Patent No. US20220380623A1.
105.
Li
,
Z.
, and
Zhenbin
,
N.
,
2020
, “Polyorganosiloxane Compositions Containing a 2-Substituted-1-Alkynyl-1-Cyclohexanol Useful as a Hydrosilylation Reaction Inhibitor,” U. S. Patent No. US10876019B2.
106.
Yamaguchi
,
K.
, and
Kishita
,
H.
,
2014
, “Diluent for a Flourine-Containing Silicone Coating Agent,” U. S. Patent No. US8765870B2.
107.
Newby
,
B. Z.
,
Chaudhury
,
M. K.
, and
Brown
,
H. R.
,
1995
, “
Macroscopic Evidence of the Effect of Interfacial Slippage on Adhesion
,”
Science
,
269
(
5229
), pp.
1407
1409
.
108.
Gordon
,
G. V.
, and
Schmidt
,
R. G.
,
2000
, “
PSA Release Force Profiles From Silicone Liners: Probing Viscoelastic Contributions From Release System Components
,”
J. Adhes.
,
72
(
2
), pp.
133
156
.
109.
Amouroux
,
N.
,
Petit
,
J.
, and
Leger
,
L.
,
2001
, “
Role of Interfacial Resistance to Shear Stress on Adhesive Peel Strength
,”
Langmuir
,
17
(
21
), pp.
6510
6517
.
110.
Leger
,
L.
, and
Amouroux
,
N.
,
2005
, “
Modulation of Adhesion at Silicone Elastomer–Acrylic Adhesive Interface
,”
J. Adhes.
,
81
(
10–11
), pp.
1075
1099
.
111.
Lamblet
,
M.
,
Verneuil
,
E.
,
Vilmin
,
T.
,
Buguin
,
A.
,
Silberzan
,
P.
, and
Leger
,
L.
,
2007
, “
Adhesion Enhancement Through Micropatterning at Polydimethylsiloxane-Acrylic Adhesive Interfaces
,”
Langmuir
,
23
(
13
), pp.
6966
6974
.
112.
Jones
,
D.
,
1997
,
Factors Affecting the Selection and Performance of Silicone Release Coatings
,
Dow Corning Corporation
,
Midland, MI
.
113.
ASTM-D6862
,
2021
,
Standard Test Method for 90 Degree Peel Resistance of Adhesives
,
American Society for Testing and Materials
,
West Conshohocken, PA
.
114.
D3330 A.
,
2018
,
Standard Test Method for Peel Adhesion of Pressure-Sensitive Tape
,
American Society for Testing and Materials
,
West Conshohocken, PA
.
115.
D6252 A.
,
2019
,
Standard Test Method for Peel Adhesion of Pressure-Sensitive Label Stocks at a 90 deg Angle
,
American Society for Testing and Materials
,
West Conshohocken, PA
.
116.
Zhenbin
,
N.
,
Fu
,
P.-F.
,
Mitchell
,
T.
, and
Wei
,
Y.
,
2023
, “Composition for Preparing a Release Coating, Release Coating Composition, and Related Methods,” U. S. Patent No. US20230050919A1.
117.
Stephen Edward
,
C.
,
David
,
R.
, and
Marc
,
T.
,
2007
, “Silicone Release Coating Compositions,” U. S. Patent No. US20070289495A1.
118.
Maiko
,
H.
,
Tsuyoshi
,
I.
, and
Mitsushi
,
Y.
,
2011
, “Protective Sheet and Use Thereof,” U. S. Patent No. US20110209994A1.
119.
Andriot
,
M.
,
Chao
,
S.
, and
Colas
,
A.
,
2009
, “Silicones in Industrial Applications: Silicones in Coatings,”
Silicon-Based Inorgic Polymers
,
Nova Science Publishers
,
Hauppauge, NY
, pp.
84
85
.
120.
Benedek
,
I.
,
2008
,
Manufacture of Pressure-Sensitive Products, Technology of Pressure-Sensitive Adhesives and Products
,
CRC Press
,
Boca Raton, FL
, pp.
10-1
10-65
.
121.
Owen
,
M. J.
, and
Dvornic
,
P. R.
,
2012
, “Surface Applications of Silicones,”
Surface Applications of Silicones
, Vol.
4
,
J.
Matisons
, ed.,
Springer Dordrecht
,
Dordrecht, Netherlands
, pp.
355
374
.
122.
Watson
,
A.
,
2020
,
Global Release Market Liner Annual Review
,
AWA Alexander Watson Associates B.V.
,
Amsterdam, Netherlands
, pp.
6
78
. https://awa-bv.com/market_report/awareness-report-industrial-release-liner-2020/
123.
Dudbridge
,
M.
,
2016
,
Handbook of Seal Integrity in the Food Industry
,
Wiley-Blackwell
,
Malden, MA
.
124.
Piergiovanni
,
L.
, and
Limbo
,
S.
,
2016
,
Food Packaging Materials
,
Springer
,
New York
.
125.
Hishinuma
,
K.
,
2009
,
Heat Sealing Technology and Engineering for Packaging: Principles and Applications
,
DEStech Publications, Inc
,
Lancaster, PA
.
126.
Halley
,
R. W.
, and
Malakoff
,
A. M.
,
2005
, “
A New High-Performance mVLDPE
,”
J. Plast. Film Sheet.
,
21
(
1
), pp.
13
26
.
127.
Gradys
,
A.
,
Sajkiewicz
,
P.
,
Minakov
,
A. A.
,
Adamovsky
,
S.
,
Schick
,
C.
,
Hashimoto
,
T.
, and
Saijo
,
K.
,
2005
, “
Crystallization of Polypropylene at Various Cooling Rates
,”
Mater. Sci. Eng.: A
,
413
(
414
), pp.
442
446
.
128.
Theller
,
H. W.
,
1989
, “
Heatsealability of Flexible Web Materials in Hot-Bar Sealing Applications
,”
J. Plast. Film Sheet.
,
5
(
1
), pp.
66
93
.
129.
Mazzola
,
N.
,
Cáceres
,
C. A.
,
França
,
M. P.
, and
Canevarolo
,
S. V.
,
2012
, “
Correlation Between Thermal Behavior of a Sealant and Heat Sealing of Polyolefin Films
,”
Polym. Test.
,
31
(
7
), pp.
870
875
.
130.
Morris
,
B. A.
,
2022
,
The Science and Technology of Flexible Packaging: Multilayer Films From Resin and Process to End Use
,
William Andrew
,
Norwich, NY
.
131.
ASTM, ASTM F88/F88M-23
,
2021
, “
Standard Test Method for Seal Strength of Flexible Barrier Materials
,” ASTM International, West Conshohocken, PA.
132.
Taheri
,
H.
,
Riggs
,
P.
,
Widem
,
N.
, and
Taheri
,
M.
,
2023
, “
Heat-Sealing Integrity Assessment Through Nondestructive Evaluation Techniques
,”
Packag. Technol. Sci.
,
36
(
2
), pp.
67
80
.
133.
Ilhan
,
I.
,
Turan
,
D.
,
Gibson
,
I.
, and
ten Klooster
,
R.
,
2021
, “
Understanding the Factors Affecting the Seal Integrity in Heat Sealed Flexible Food Packages: A Review
,”
Packag. Technol. Sci.
,
34
(
6
), pp.
321
337
.
134.
Konaganti
,
V. K.
,
Sadeghi
,
S.
, and
Goyal
,
S. K.
,
2018
, “
Thermo-Rheological Modeling and Simulation of Heat Sealing Process for Multi-Layer Flexible Packaging Applications
,”
Annual Technical Conference of the Society of Plastics Engineers
,
Orlando, FL
,
May 7–10
, pp.
2817
2824
.
135.
Market
,
M. A.
,
2021
, “
Medical Adhesives Market by Natural Type, Synthetic & Semi-Synthetic Resin Tpe (Acrylic, Silicone, Cyanoacrylate, pu, Epoxy), Technology (Water Based, Solvent Based, and Solids and Hot Melts), Application, and Region—Global Forecast to 2026
,” https://www.marketsandmarkets.com/Market-Reports/medical-adhesive-market-41880473.html, Accessed August 1, 2024.
136.
Ge
,
L.
, and
Chen
,
S.
,
2020
, “
Recent Advances in Tissue Adhesives for Clinical Medicine
,”
Polymers
,
12
(
4
), p.
939
.
137.
Richter
,
K.
,
Pinheiro
,
M.
,
Borcherding
,
K.
,
Hartwig
,
A.
,
Byern
,
J. V.
, and
Grunwald
,
I.
,
2019
, “Adhesives for Medical Applications,”
Green Chemistry for Surface Coatings, Inks and Adhesives: Sustainable Applications
,
R.
Höfer
,
A. S.
Matharu
, and
Z.
Zhang
, eds.,
The Royal Society of Chemistry
,
Cambridge, UK
, pp.
120
144
.
138.
Ebnesajjad
,
S.
,
2011
, “6—Adhesives for Medical and Dental Applications,”
Handbook of Polymer Applications in Medicine and Medical Devices
,
K.
Modjarrad
, and
S.
Ebnesajjad
, eds.,
William Andrew Publishing
,
Oxford
, pp.
103
129
.
139.
Venkatraman
,
S.
, and
Gale
,
R.
,
1998
, “
Skin Adhesives and Skin Adhesion: 1. Transdermal Drug Delivery Systems
,”
Biomaterials
,
19
(
13
), pp.
1119
1136
.
140.
Hwang
,
I.
,
Kim
,
H. N.
,
Seong
,
M.
,
Lee
,
S.-H.
,
Kang
,
M.
,
Yi
,
H.
,
Bae
,
W. G.
,
Kwak
,
M. K.
, and
Jeong
,
H. E.
,
2018
, “
Multifunctional Smart Skin Adhesive Patches for Advanced Health Care
,”
Adv. Healthc. Mater.
,
7
(
15
), p.
1800275
.
141.
Wong
,
S. H. D.
,
Deen
,
G. R.
,
Bates
,
J. S.
,
Maiti
,
C.
,
Lam
,
C. Y. K.
,
Pachauri
,
A.
,
AlAnsari
,
R.
,
Bělský
,
P.
,
Yoon
,
J.
, and
Dodda
,
J. M.
,
2023
, “
Smart Skin-Adhesive Patches: From Design to Biomedical Applications
,”
Adv. Funct. Mater.
,
33
(
14
), p.
2213560
.
142.
Czech
,
Z.
,
Kowalczyk
,
A.
, and
Swiderska
,
J.
,
2011
, “
Pressure-Sensitive Adhesives for Medical Applications
,”
Wide Spectra Quality Control
,
17
(
1
), pp.
310
332
.
143.
Rippon
,
M.
,
White
,
R.
, and
Davies
,
P.
,
2007
,
Skin Adhesives and Their Role in Wound Dressings
,
Wounds UK
,
London
,
3
, p.
76
.
144.
Singer
,
A. J.
,
Quinn
,
J. V.
, and
Hollander
,
J. E.
,
2008
, “
The Cyanoacrylate Topical Skin Adhesives
,”
Ame. J. Emergency Med.
,
26
(
4
), pp.
490
496
.
145.
McNichol
,
L.
,
Lund
,
C.
,
Rosen
,
T.
, and
Gray
,
M.
,
2013
, “
Medical Adhesives and Patient Safety: State of the Science: Consensus Statements for the Assessment, Prevention, and Treatment of Adhesive-Related Skin Injuries
,”
Orthop. Nurs.
,
32
(
5
), pp.
267
281
.
146.
Liu
,
J.
,
2012
, “Medical Adhesives and Skin Adhesion, Skin and Wound Care Division,” https://pstc.org/wp-content/uploads/2022/05/Liu-Jacob2012.pdf, Accessed 20, 2024.
147.
Kandur
,
M. Y.
,
Hemamalini
,
R.
, and
Öner
,
E. T.
,
2023
, “Global Industry Development and Analysis of Adhesives for Biomedical Applications,”
Adhesives in Biomedical Applications
,
Wiley
,
Hoboken, NJ
, pp.
25
46
.
148.
Group
,
I.
,
2023
, “
Bioadhesive Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2023–2028
,” https://www.imarcgroup.com/bioadhesive-market, Accessed August 1, 2024.
149.
Benedek
,
I.
, and
Feldstein
,
M. M.
,
2009
,
Technology of Pressure-Sensitive Adhesives and Products
, 1st ed.,
CRC Press
,
Boca Raton, FL
, pp.
1
568
.
150.
Schott
,
H.
,
1971
, “
Contact Angles and Wettability of Human Skin
,”
J. Pharm. Sci.
,
60
(
12
), pp.
1893
1895
.
151.
Grove
,
G. L.
,
Zerweck
,
C. R.
,
Ekholm
,
B. P.
,
Smith
,
G. E.
, and
Koski
,
N. I.
,
2014
, “
Randomized Comparison of a Silicone Tape and a Paper Tape for Gentleness in Healthy Children
,”
J. Wound Ostomy Continence Nurs.
,
41
(
1
), pp.
40
48
.
152.
Mbithi
,
F.
, and
Worsley
,
P. R.
,
2023
, “
Adhesives for Medical Application-Peel Strength Testing and Evaluation of Biophysical Skin Response
,”
J. Mech. Behav. Biomed. Mater.
,
148
, pp.
1
8
.
153.
Hansen
,
D.
,
Zajforoushan Moghaddam
,
S.
,
Eiler
,
J.
,
Hansen
,
K.
, and
Thormann
,
E.
,
2020
, “
Performance of Polymeric Skin Adhesives During Perspiration
,”
ACS Appl. Polym. Mater.
,
2
(
4
), pp.
1535
1542
.
154.
Eiler
,
J.
,
Hansen
,
D.
,
Bingöl
,
B.
,
Hansen
,
K.
,
Heikenfeld
,
J.
, and
Thormann
,
E.
,
2020
, “
In Vitro Evaluation of Skin Adhesives During Perspiration
,”
Int. J. Adhes. Adhes.
,
99
, pp.
1
7
.
155.
Eiler
,
J.
,
Hansen
,
D.
,
Bingol
,
B.
,
Hansen
,
K.
, and
Thormann
,
E.
,
2020
, “
How the Viscoelastic and Sweat-Absorbing Properties of Skin Adhesives Affect Their Performance During Perspiration
,”
ACS Appl. Polym. Mater.
,
2
(
12
), pp.
5533
5541
.
156.
Lund
,
C. H.
,
Nonato
,
L. B.
,
Kuller
,
J. M.
,
Franck
,
L. S.
,
Cullander
,
C.
, and
Durand
,
D. K.
,
1997
, “
Disruption of Barrier Function in Neonatal Skin Associated With Adhesive Removal
,”
J. Pediatr.
,
131
(
3
), pp.
367
372
.
157.
Fumarola
,
S.
,
Allaway
,
R.
,
Callaghan
,
R.
,
Collier
,
M.
,
Downie
,
F.
,
Geraghty
,
J.
,
Kiernan
,
S.
, et al
,
2020
, “
Overlooked and Underestimated: Medical Adhesive-Related Skin Injuries
,”
J. Wound Care
,
29
(
Sup3c
), pp.
S1
S24
.
158.
Matsumura
,
H.
,
Imai
,
R.
,
Ahmatjan
,
N.
,
Ida
,
Y.
,
Gondo
,
M.
,
Shibata
,
D.
, and
Wanatabe
,
K.
,
2014
, “
Removal of Adhesive Wound Dressing and its Effects on the Stratum Corneum of the Skin: Comparison of Eight Different Adhesive Wound Dressings
,”
Int. Wound J.
,
11
(
1
), pp.
50
54
.
159.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.
160.
Xiang
,
Y.
,
Zhong
,
D.
,
Rudykh
,
S.
,
Zhou
,
H.
,
Qu
,
S.
, and
Yang
,
W.
,
2020
, “
A Review of Physically Based and Thermodynamically Based Constitutive Models for Soft Materials
,”
ASME J. Appl. Mech.
,
87
(
11
), p.
110801
.
161.
Mitsoulis
,
E.
,
2013
, “
50 Years of the K-BKZ Constitutive Relation for Polymers
,”
Int. Scholarly Res. Notices
,
2013
, pp.
1
22
.
162.
Bernstein
,
B.
,
Kearsley
,
E. A.
, and
Zapas
,
L. J.
,
1963
, “
A Study of Stress Relaxation With Finite Strain
,”
Trans. Soc. Rheol.
,
7
(
1
), pp.
391
410
.
163.
Rolón-Garrido
,
V. H.
, and
Wagner
,
M. H.
,
2009
, “
The Damping Function in Rheology
,”
Rheol. Acta
,
48
(
3
), pp.
245
284
.
164.
Wagner
,
M. H.
,
1979
, “
Elongational Behavior of Polymer Melts in Constant Elongation-Rate, Constant Tensile-Stress, and Constant Tensile Force Experiments
,”
Rheol. Acta
,
18
(
6
), pp.
681
692
.
You do not currently have access to this content.