Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

We present a model for incremental deformations of an elastic solid reinforced by a single family of fibers that offer resistance to extension, flexure, and torsion. The theory is cast in the setting of small-on-large deformations and provides a framework for the multiscale analysis of bifurcation of equilibria in fibrous composites. The model is based on a theory of three-dimensional Cosserat elasticity in which fiber kinematics are controlled by a rotation field that is weakly coupled to the bulk deformation through a pointwise fiber-materiality constraint. Fiber–matrix interaction forces are explicitly accounted for via the attendant Lagrange multipliers. We demonstrate the utility of the model by investigating the onset of bifurcation in an incompressible fiber-reinforced elastic half-plane. In particular, we study the influence of axial fiber stiffness, flexural stiffness, and fiber–matrix interaction forces on planar buckling modes. We envisage a model for the study of buckling problems of biological and industrial relevance with a view to gaining better insight into the roles of fiber bending, twisting, and fiber–matrix interaction forces in regulating the buckling of fibrous composites.

References

1.
Lakes
,
R. S.
,
2020
,
Composites and Metamaterials
,
World Scientific
,
Hackensack, NJ
.
2.
Akbarov
,
S. D.
, and
Guz
,
A. N.
,
2000
,
Mechanics of Curved Composites
(Vol.
78
;
Solid Mechanics and Its Applications
),
Springer Netherlands
,
Dordrecht
.
3.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
, eds.,
2006
,
Mechanics of Biological Tissue
,
Springer
,
Berlin/New York
.
4.
Spencer
,
A. J. M.
,
1972
,
Deformations of Fibre-Reinforced Materials
(
Oxford Science Research Papers
),
Clarendon Press
,
Oxford
.
5.
Spencer
,
A. J. M.
, ed.,
1984
,
Continuum Theory of the Mechanics of Fibre-Reinforced Composites
,
Springer
,
Vienna
.
6.
Antman
,
S. S.
,
2005
,
Nonlinear Problems of Elasticity
2nd ed., Vol.
107
;
Applied Mathematical Sciences
),
Springer
,
New York
.
7.
O’Reilly
,
O. M.
,
2017
,
Modeling Nonlinear Problems in the Mechanics of Strings and Rods
(
Interaction of Mechanics and Mathematics
),
Springer International Publishing
,
Cham
.
8.
Park
,
S.
, and
Seo
,
M.-K.
,
2011
,
Interface Science and Composites
, 1st ed., Vol.
18
; (
Interface Science and Technology
),
Elsevier, Academic Press
,
Amsterdam, Boston
.
9.
Kakaletsis
,
S.
,
Lejeune
,
E.
, and
Rausch
,
M.
,
2023
, “
The Mechanics of Embedded Fiber Networks
,”
J. Mech. Phys. Solids
,
181
, p.
105456
.
10.
Karthik
,
K.
,
Rajamani
,
D.
,
Raja
,
T.
, and
Subramani
,
K.
,
2022
, “
Experimental Investigation on the Mechanical Properties of Carbon/Kevlar Fibre Reinforced Epoxy LY556 Composites
,”
Mater. Today: Proc.
,
52
, pp.
668
674
.
11.
López Jiménez
,
F.
, and
Pellegrino
,
S.
,
2012
, “
Constitutive Modeling of Fiber Composites with a Soft Hyperelastic Matrix
,”
Int. J. Solids Struct.
,
49
(
3–4
), pp.
635
647
.
12.
Chaudhuri
,
O.
,
Parekh
,
S. H.
, and
Fletcher
,
D. A.
,
2007
, “
Reversible Stress Softening of Actin Networks
,”
Nature
,
445
(
7125
), pp.
295
298
.
13.
Middendorf
,
J. M.
,
Shortkroff
,
S.
,
Dugopolski
,
C.
,
Kennedy
,
S.
,
Siemiatkoski
,
J.
,
Bartell
,
L. R.
,
Cohen
,
I.
, and
Bonassar
,
L. J.
,
2017
, “
In Vitro Culture Increases Mechanical Stability of Human Tissue Engineered Cartilage Constructs by Prevention of Microscale Scaffold Buckling
,”
J. Biomech.
,
64
, pp.
77
84
.
14.
Middendorf
,
J. M.
,
Dugopolski
,
C.
,
Kennedy
,
S.
,
Blahut
,
E.
,
Cohen
,
I.
, and
Bonassar
,
L. J.
,
2020
, “
Heterogeneous Matrix Deposition in Human Tissue Engineered Cartilage Changes the Local Shear Modulus and Resistance to Local Construct Buckling
,”
J. Biomech.
,
105
, p.
109760
.
15.
Kim
,
B.
,
Middendorf
,
J. M.
,
Diamantides
,
N.
,
Dugopolski
,
C.
,
Kennedy
,
S.
,
Blahut
,
E.
,
Cohen
,
I.
,
Bouklas
,
N.
, and
Bonassar
,
L. J.
,
2022
, “
The Role of Buckling Instabilities in the Global and Local Mechanical Response in Porous Collagen Scaffolds
,”
Exp. Mech.
,
62
(
7
), pp.
1067
1077
.
16.
Jimenez
,
F. L.
,
2011
, “
Mechanics of Thin Carbon Fiber Composites With a Silicone Matrix
,” Ph D. thesis,
California Institute of Technology
,
Pasadena, CA
.
17.
López Jiménez
,
F.
, and
Pellegrino
,
S.
,
2012
, “
Folding of Fiber Composites With a Hyperelastic Matrix
,”
Int. J. Solids Struct.
,
49
(
3–4
), pp.
395
407
.
18.
Brachthauser Balcells
,
S.
, and
López Jiménez
,
F.
,
2023
, “
Modeling Fiber Microbuckling in the Bending of Soft Composites Using Nonlinear Homogenization
,”
AIAA J.
,
61
(
6
), pp.
2711
2720
.
19.
Francis
,
W.
,
2008
, “
Mechanics of Post-Microbuckled Compliant-Matrix Composites
,” Ph.D. thesis,
Colorado State University
,
Fort Collins, CO
.
20.
Folias
,
E. S.
,
1991
, “
On the Prediction of Failure At a Fiber/Matrix Interface in a Composite Subjected to a Transverse Tensile Load
,”
J. Compos. Mater.
,
25
(
7
), pp.
869
886
.
21.
Talreja
,
R.
, and
Singh
,
C. V.
,
2012
,
Damage and Failure of Composite Materials
, 1st ed.,
Cambridge University Press
,
Cambridge, UK
.
22.
Arteiro
,
A.
,
Furtado
,
C.
,
Catalanotti
,
G.
,
Linde
,
P.
, and
Camanho
,
P.
,
2020
, “
Thin-Ply Polymer Composite Materials: A Review
,”
Comp. Part A: Appl. Sci. Manuf.
,
132
, p.
105777
.
23.
Ingber
,
D. E.
,
2006
, “
Cellular Mechanotransduction: Putting All the Pieces Together Again
,”
FASEB J.
,
20
(
7
), pp.
811
827
.
24.
Kim
,
S.
,
Uroz
,
M.
,
Bays
,
J. L.
, and
Chen
,
C. S.
,
2021
, “
Harnessing Mechanobiology for Tissue Engineering
,”
Dev. Cell
,
56
(
2
), pp.
180
191
.
25.
Firmbach
,
M.
,
Steinbrecher
,
I.
,
Popp
,
A.
, and
Mayr
,
M.
,
2024
, “
An approximate block factorization preconditioner for mixed-dimensional beam-solid interaction
,”
Comput. Methods Appl. Mech. Engrg.
,
431
.
26.
Spencer
,
A.
, and
Soldatos
,
K.
,
2007
, “
Finite Deformations of Fibre-Reinforced Elastic Solids With Fibre Bending Stiffness
,”
Int. J. Non-Linear Mech.
,
42
(
2
), pp.
355
368
.
27.
Steigmann
,
D. J.
,
2012
, “
Theory of Elastic Solids Reinforced With Fibers Resistant to Extension, Flexure and Twist
,”
Int. J. Non-Linear Mech.
,
47
(
7
), pp.
734
742
.
28.
Poulios
,
K.
, and
Niordson
,
C. F.
,
2016
, “
Homogenization of Long Fiber Reinforced Composites Including Fiber Bending Effects
,”
J. Mech. Phys. Solids
,
94
, pp.
433
452
.
29.
Dutra
,
T. A.
,
Ferreira
,
R. T. L.
,
Resende
,
H. B.
, and
Guimarães
,
A.
,
2019
, “
Mechanical Characterization and Asymptotic Homogenization of 3D-printed Continuous Carbon Fiber-Reinforced Thermoplastic
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
(
3
), p.
133
.
30.
Landau
,
L. D.
,
Lifšic
,
E. M.
,
Landau
,
L. D.
, and
Landau
,
L. D.
,
2009
, Theory of Elasticity, 3. engl. ed., rev. and enlarged, [nachdr.] ed. No. 7 in Course of Theoretical Physics / L. D. Landau and E. M. Lifshitz. Elsevier, Butterworth-Heinemann, Amsterdam Heidelberg.
31.
Dill
,
E. H.
,
1992
, “
Kirchhoff’s Theory of Rods
,”
Arch. Hist. Exact Sci.
,
44
(
1
), pp.
1
23
.
32.
Steigmann
,
D. J.
,
2015
, “
Effects of Fiber Bending and Twisting Resistance on the Mechanics of Fiber-Reinforced Elastomers
.”
Nonlinear Mechanics of Soft Fibrous Materials
,
L.
Dorfmann
and
R. W.
Ogden
, eds., Vol.
559
.
Springer
,
Vienna
, pp.
269
305
.
33.
Shirani
,
M.
, and
Steigmann
,
D. J.
,
2020
, “
A Cosserat Model of Elastic Solids Reinforced by a Family of Curved and Twisted Fibers
,”
Symmetry
,
12
(
7
), p.
1133
.
34.
Shirani
,
M.
, and
Steigmann
,
D. J.
,
2022
, “
Cosserat Elasticity of Lattice Solids
,”
J. Elast.
,
151
(
1
), pp.
73
88
.
35.
McAvoy
,
R. C.
, and
Steigmann
,
D. J.
,
2024
, “
Cosserat Elasticity of Helically Wound Cylinders
,”
J. Elast.
,
155
(
1–5
), pp.
205
220
.
36.
Steigmann
,
D. J.
,
Bîrsan
,
M.
, and
Shirani
,
M.
,
2023
, “
A Cosserat Model For Fiber-Reinforced Elastic Plates
.”
Sixty Shades of Generalized Continua
,
H.
Altenbach
,
A.
Berezovski
,
F.
dell’Isola
, and
A.
Porubov
, eds., Vol.
170
.
Springer International Publishing
,
Cham
, pp.
663
686
.
37.
Steigmann
,
D. J.
,
Bîrsan
,
M.
, and
Shirani
,
M.
,
2023
, “
Thin Shells Reinforced by Fibers With Intrinsic Flexural and Torsional Elasticity
,”
Int. J. Solids Struct.
,
285
, p.
112550
.
38.
McAvoy
,
R. C.
,
2024
, “
Fiber-Reinforced Elastic Shells: A Direct Cosserat Approach
,”
J. Elast.
,
156
(
2
), pp.
333
354
.
39.
Green
,
A. E.
, and
Zerna
,
W.
,
1992
,
Theoretical Elasticity
, 2nd ed.,
Dover
,
New York
.
40.
Ogden
,
R. W.
,
1997
,
Non-Linear Elastic Deformations
,
Dover Publications
,
Mineola, NY
.
41.
Cosserat
,
E. M. P.
, and
Cosserat
,
F.
,
1909
,
Théorie Des Corps Déformables
,
A. Hermann et fils
,
Paris, France
.
42.
Toupin
,
R. A.
,
1964
, “
Theories of Elasticity With Couple-Stress
,”
Arch. Rat. Mech. Anal.
,
17
(
2
), pp.
85
112
.
43.
Truesdell
,
C.
, and
Noll
,
W.
,
2004
,
The Non-Linear Field Theories of Mechanics
,
Springer
,
Berlin/Heidelberg
.
44.
McAvoy
,
R.
,
2024
, “
Consistent Linearization of Micromorphic Continuum Theories
,”
Math. Mech. Solids
.
45.
Bakiler
,
A. D.
, and
Javili
,
A.
,
2020
, “
Bifurcation Behavior of Compressible Elastic Half-space Under Plane Deformations
,”
Int. J. Non-Linear Mech.
,
126
, p.
103553
.
46.
Biot
,
M. A.
,
1963
, “
Exact Theory of Buckling of a Thick Slab
,”
Appl. Sci. Res.
,
12
(
2
), pp.
183
198
.
47.
Destrade
,
M.
,
2003
, “
Rayleigh Waves and Surface Stability for Bell Materials in Compression; Comparison With Rubber
,”
Q. J. Mech. Appl. Math.
,
56
(
4
), pp.
593
604
.
48.
Goriely
,
A.
,
2017
,
The Mathematics and Mechanics of Biological Growth
Vol.
45
;
Interdisciplinary Applied Mathematics
),
Springer
,
New York, NY
.
49.
Li
,
J.
,
Slesarenko
,
V.
,
Galich
,
P. I.
, and
Rudykh
,
S.
,
2018
, “
Instabilities and Pattern Formations in 3D-Printed Deformable Fiber Composites
,”
Comp. Part B: Eng.
,
148
, pp.
114
122
.
50.
Daum
,
B.
, and
Rolfes
,
R.
,
2022
, “
A Micropolar Approach to Microbuckling Problems in Unidirectionally Reinforced Polymer Composites
,”
Mech. Mater.
,
165
, p.
104112
.
51.
Pietraszkiewicz
,
W.
, and
Eremeyev
,
V.
,
2009
, “
On Natural Strain Measures of the Non-Linear Micropolar Continuum
,”
Int. J. Solids Struct.
,
46
(
3–4
), pp.
774
787
.
52.
Healey
,
T. J.
,
2002
, “
Material Symmetry and Chirality in Nonlinearly Elastic Rods
,”
Math. Mech. Solids
,
7
(
4
), pp.
405
420
.
53.
Steigmann
,
D. J.
,
2017
,
Finite Elasticity Theory
,
Oxford University Press
,
Oxford
.
54.
Dorfmann
,
L.
, and
Ogden
,
R. W.
, eds.,
2015
,
Nonlinear Mechanics of Soft Fibrous Materials
Vol.
559
;
CISM International Centre for Mechanical Sciences
,
Springer Vienna
,
Vienna
.
55.
Steigmann
,
D. J.
,
2015
, “
Mechanical Response of Fabric Sheets to Three-dimensional Bending, Twisting, and Stretching
,”
Acta Mech. Sin.
,
31
(
3
), pp.
373
382
.
56.
dell’Isola
,
F.
, and
Steigmann
,
D.
,
2015
, “
A Two-Dimensional Gradient-Elasticity Theory for Woven Fabrics
,”
J. Elast.
,
118
(
1
), pp.
113
125
.
57.
Eugster
,
S.
, and
Steigmann
,
D.
,
2019
, “
Continuum Theory for Mechanical Metamaterials With a Cubic Lattice Substructure
,”
Math. Mech. Complex Syst.
,
7
(
1
), pp.
75
98
.
58.
dell’Isola
,
F.
,
Seppecher
,
P.
,
Alibert
,
J. J.
,
Lekszycki
,
T.
,
Grygoruk
,
R.
,
Pawlikowski
,
M.
,
Steigmann
,
D.
, et al
,
2019
, “
Pantographic Metamaterials: An Example of Mathematically Driven Design and of Its Technological Challenges
,”
Continu. Mech. Thermodyn.
,
31
(
4
), pp.
851
884
.
59.
Barchiesi
,
E.
,
Spagnuolo
,
M.
, and
Placidi
,
L.
,
2019
, “
Mechanical Metamaterials: A State of the Art
,”
Math. Mech. Solids
,
24
(
1
), pp.
212
234
.
60.
dell’Isola
,
F.
, and
Steigmann
,
D. J.
,
2020
,
Discrete and Continuum Models for Complex Metamaterials
, 1st ed.,
Cambridge University Press
,
Cambridge, UK
.
61.
McAvoy
,
R. C.
,
2023
, “
Incremental Stability and Bifurcation of Cosserat Lattice Solids
,” Master’s thesis,
University of California
,
Berkeley, CA
.
You do not currently have access to this content.