Abstract

Existing studies on wrinkling, an instability phenomenon commonly observed on electro-active polymers (EAP), have largely ignored the unequal-biaxial taut states, focusing instead on the equal-biaxial deformations of such a material class. EAP-based soft actuators, primarily used in soft robotics, frequently exhibit a variety of instabilities, which may adversely affect their functioning and trigger device failure. Conversely, wrinkles can be utilized proactively in specific applications that necessitate an intentional transformation in surface morphology along with functional particle reinforcement on EAP composites. The dielectric elastomer is a promising EAP material class for the same, often filled with functional particles to improve its electromechanical performance. This paper theoretically develops a continuum physics-based unequal-biaxial deformation model incorporating the classical tension field theory to predict the thresholds on the taut domains in the plane of principal stretches. The model solution ties an unanswered ideal remark on the deviations of taut states with the biaxiality ratio of unequal-biaxially deformed wrinkle appearance in EAP composites. The proposed model solution may aid in designing next-generation soft robotic systems by offering guidelines for the wrinkling control of EAP composites.

References

1.
Ranjan
,
R. A.
, and
Sarangi
,
S.
,
2023
, “
Effect of Electrode on the Dynamics of Electroactive Membrane
,”
ASME J. Appl. Mech.
, pp.
1
11
.
2.
Kim
,
J.
,
Kim
,
J. W.
,
Kim
,
H. C.
,
Zhai
,
L.
,
Ko
,
H.-U.
, and
Muthoka
,
R. M.
,
2019
, “
Review of Soft Actuator Materials
,”
Int. J. Precis. Eng. Manuf.
,
20
, pp.
2221
2241
.
3.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
.
4.
Suo
,
Z.
,
2010
, “
Theory of Dielectric Elastomers
,”
Acta Mechanica Solida Sinica
,
23
(
6
), pp.
549
578
.
5.
Yang
,
X.
,
Li
,
G.
,
Cheng
,
T.
,
Zhao
,
Q.
,
Ma
,
C.
,
Xie
,
T.
,
Li
,
T.
, and
Yang
,
W.
,
2016
, “
Bio-Inspired Fast Actuation by Mechanical Instability of Thermoresponding Hydrogel Structures
,”
ASME J. Appl. Mech.
,
83
(
7
), p.
071005
.
6.
Sharma
,
A. K.
,
Kumar
,
P.
,
Singh
,
A.
,
Joglekar
,
D. M.
, and
Joglekar
,
M. M.
,
2019
, “
Electromechanical Instability of Dielectric Elastomer Actuators With Active and Inactive Electric Regions
,”
ASME J. Appl. Mech.
,
86
(
6
), p.
061008
.
7.
Khurana
,
A.
,
Kumar
,
D.
,
Sharma
,
A. K.
, and
Joglekar
,
M. M.
,
2021
, “
Nonlinear Oscillations of Particle-Reinforced Electro-Magneto-Viscoelastomer Actuators
,”
ASME J. Appl. Mech.
,
88
(
12
), p.
121002
.
8.
Gour
,
S.
,
Kumar
,
D.
, and
Yadav
,
V.
,
2021
, “
Charge-Controlled Electromechanical Instability Modeling of a Dielectric Plate Actuator
,”
2021 IEEE Madras Section Conference (MASCON)
,
Chennai, India
,
Aug. 27–28
,
IEEE
, pp.
1
4
.
9.
Hossain
,
M.
, and
Steinmann
,
P.
,
2018
, “
Modelling Electro-Active Polymers With a Dispersion-Type Anisotropy
,”
Smart Mater. Struct.
,
27
(
2
), p.
025010
.
10.
Guo
,
X.
,
2021
, “
Development Status of Medical Nursing Robots: Focused on Flexiblility, Autonomous Mobility, and Non-Contact Physical Signs Monitoring
,”
Proceedings of the 2nd International Symposium on Artificial Intelligence for Medicine Sciences
,
Beijing, China
,
Oct. 29–31
, pp.
178
187
.
11.
De Tommasi
,
D.
,
Puglisi
,
G.
, and
Zurlo
,
G.
,
2014
, “
Hysteresis in Electroactive Polymers
,”
Euro. J. Mech. A/Solids
,
48
, pp.
16
22
.
12.
Gour
,
S.
, and
Kumar
,
D.
,
2023
, “
A Physics-Based Failure Study of Smart Artificial Tissues in Human-Like Soft Robots
,”
Euro. J. Mech. A/Solids
,
102
(
3
), p.
105087
.
13.
Gour
,
S.
, and
Kumar
,
D.
,
2023
, “
Thermo-Electrostrictive Unequal-Biaxial Deformation Instability of Electro-Active Polymeric Composites
,”
Int. J. Non-Linear Mech.
,
156
, p.
104481
.
14.
Gour
,
S.
,
Kumar
,
D.
, and
Yadav
,
V.
,
2023
, “
Electromechanical Instability Modeling of Particle-Reinforced Dielectric Elastomeric Actuators
,”
Advances in Material Science and Metallurgy: Select Proceedings of ICFAMMT 2022
,
Ahmedabad, India
,
Jan. 20–21
,
Springer
, pp.
245
256
.
15.
Sheng
,
N.
,
Boyce
,
M. C.
,
Parks
,
D. M.
,
Rutledge
,
G.
,
Abes
,
J.
, and
Cohen
,
R.
,
2004
, “
Multiscale Micromechanical Modeling of Polymer/Clay Nanocomposites and the Effective Clay Particle
,”
Polymer
,
45
(
2
), pp.
487
506
.
16.
Móczó
,
J.
, and
Pukanszky
,
B.
,
2008
, “
Polymer Micro and Nanocomposites: Structure, Interactions, Properties
,”
J. Ind. Eng. Chem.
,
14
(
5
), pp.
535
563
.
17.
Gour
,
S.
, and
Kumar
,
D.
,
2022
, “
Constitutive Modeling of Particle Reinforced Rubber-Like Materials
,”
Theor. Appl. Mech. Lett.
,
12
(
6
), p.
100383
.
18.
Gour
,
S.
,
Kumar
,
D.
, and
Yadav
,
V.
,
2022
, “
Constitutive Modeling for the Tear Fracture of Rubber With Filler Particles
,”
Sādhanā
,
47
(
2
), p.
82
.
19.
O’Halloran
,
A.
,
O’malley
,
F.
, and
McHugh
,
P.
,
2008
, “
A Review on Dielectric Elastomer Actuators, Technology, Applications, and Challenges
,”
J. Appl. Phys.
,
104
(
7
), p.
071101
.
20.
Brochu
,
P.
, and
Pei
,
Q.
,
2012
, “Dielectric Elastomers for Actuators and Artificial Muscles,”
Electroactivity in Polymeric Materials
,
L.
Rasmussen
, ed., Springer, Boston, MA, pp.
1
56
.
21.
Gour
,
S.
,
Kumar
,
D.
, and
Khurana
,
A.
,
2022
, “
Constitutive Modeling for the Tear Fracture of Artificial Tissues in Human-Like Soft Robots
,”
Euro. J. Mech. A/Solids
,
96
, p.
104672
.
22.
Gour
,
S.
,
Ahmad
,
D.
,
Kumar
,
D.
,
Ajaj
,
R. M.
, and
Zweiri
,
Y.
,
2023
, “
Investigating the Tear Fracture of Elastomeric Skins in Morphing Wings: An Experimental and Computational Study
,”
Int. J. Appl. Mech.
,
15
(
10
), p.
2350096
.
23.
Plante
,
J.-S.
, and
Dubowsky
,
S.
,
2006
, “
Large-Scale Failure Modes of Dielectric Elastomer Actuators
,”
Int. J. Solids Struct.
,
43
(
25–26
), pp.
7727
7751
.
24.
Kofod
,
G.
,
2008
, “
The Static Actuation of Dielectric Elastomer Actuators: How Does Pre-Stretch Improve Actuation?
,”
J. Phys. D: Appl. Phys.
,
41
(
21
), p.
215405
.
25.
Kumar
,
D.
, and
Sarangi
,
S.
,
2019
, “
Electro-Mechanical Instability Modelling in Elastomeric Actuators: A Second Law of Thermodynamics-Based Approach
,”
Soft Mater.
,
17
(
3
), pp.
308
320
.
26.
Joglekar
,
M. M.
,
2014
, “
An Energy-Based Approach to Extract the Dynamic Instability Parameters of Dielectric Elastomer Actuators
,”
ASME J. Appl. Mech.
,
81
(
9
), p.
091010
.
27.
Sharma
,
A. K.
,
Arora
,
N.
, and
Joglekar
,
M. M.
,
2018
, “
DC Dynamic Pull-In Instability of a Dielectric Elastomer Balloon: An Energy-Based Approach
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
474
(
2211
), p.
20170900
.
28.
Sharma
,
A. K.
,
Sheshkar
,
N.
, and
Gupta
,
A.
,
2021
, “
Static and Dynamic Stability of Dielectric Elastomer Fiber Composites
,”
Mater. Today: Proc.
,
44
, pp.
2043
2047
.
29.
Rudykh
,
S.
,
Bhattacharya
,
K.
, and
Debotton
,
G.
,
2012
, “
Snap-Through Actuation of Thick-Wall Electroactive Balloons
,”
Int. J. Non-Linear Mech.
,
47
(
2
), pp.
206
209
.
30.
Guth
,
E.
,
1945
, “
Theory of Filler Reinforcement
,”
Rubber Chem. Technol.
,
18
(
3
), pp.
596
604
.
31.
De Tommasi
,
D.
,
Puglisi
,
G.
,
Saccomandi
,
G.
, and
Zurlo
,
G.
,
2010
, “
Failure Mechanisms in Thin Electroactive Polymer Actuators
,” arXiv preprint arXiv:1004.5095. https://arxiv.org/abs/1004.509
32.
De Tommasi
,
D.
,
Puglisi
,
G.
, and
Zurlo
,
G.
,
2011
, “
Compression-Induced Failure of Electroactive Polymeric Thin Films
,”
Appl. Phys. Lett.
,
98
(
12
).
33.
De Tommasi
,
D.
,
Puglisi
,
G.
, and
Zurlo
,
G.
,
2012
, “
Taut States of Dielectric Elastomer Membranes
,”
Int. J. Non-Linear Mech.
,
47
(
2
), pp.
355
361
.
34.
Khurana
,
A.
,
Kumar
,
D.
,
Sharma
,
A. K.
,
Zurlo
,
G.
, and
Joglekar
,
M.
,
2022
, “
Taut Domains in Transversely Isotropic Electro-Magneto-Active Thin Membranes
,”
Int. J. Non-Linear Mech.
,
147
, p.
104228
.
35.
Li
,
K.
,
Wu
,
W.
,
Jiang
,
Z.
, and
Cai
,
S.
,
2018
, “
Voltage-Induced Wrinkling in a Constrained Annular Dielectric Elastomer Film
,”
ASME J. Appl. Mech.
,
85
(
1
), p.
011007
.
36.
Shui
,
L.
,
Liu
,
Y.
,
Li
,
B.
,
Zou
,
C.
,
Tang
,
C.
,
Zhu
,
L.
, and
Chen
,
X.
,
2019
, “
Mechanisms of Electromechanical Wrinkling for Highly Stretched Substrate-Free Dielectric Elastic Membrane
,”
J. Mech. Phys. Solids
,
122
, pp.
520
537
.
37.
Khurana
,
A.
,
Joglekar
,
M.
, and
Zurlo
,
G.
,
2022
, “
Electromechanical Stability of Wrinkled Dielectric Elastomers
,”
Int. J. Solids Struct.
,
246
, p.
111613
.
38.
Ahmad
,
D.
,
Kumar
,
D.
, and
Ajaj
,
R. M.
,
2022
, “
Multiaxial Deformations of Elastomeric Skins for Morphing Wing Applications: Theoretical Modeling and Experimental Investigations
,”
Polymers
,
14
(
22
), p.
4891
.
39.
Ruppin
,
R.
,
2000
, “
Evaluation of Extended Maxwell-Garnett Theories
,”
Opt. Commun.
,
182
(
4–6
), pp.
273
279
.
40.
Nisanci
,
M. H.
,
De Paulis
,
F.
,
Koledintseva
,
M. Y.
,
Drewniak
,
J. L.
, and
Orlandi
,
A.
,
2011
, “
From Maxwell Garnett to Debye Model for Electromagnetic Simulation of Composite Dielectrics—Part II: Random Cylindrical Inclusions
,”
IEEE Trans. Electromag. Compat.
,
54
(
2
), pp.
280
289
.
41.
Battie
,
Y.
,
Resano-Garcia
,
A.
,
Chaoui
,
N.
,
Zhang
,
Y.
, and
En Naciri
,
A.
,
2014
, “
Extended Maxwell-Garnett-Mie Formulation Applied to Size Dispersion of Metallic Nanoparticles Embedded in Host Liquid Matrix
,”
J. Chem. Phys.
,
140
(
4
), p.
044705
.
42.
Poikelispää
,
M.
,
Shakun
,
A.
,
Das
,
A.
, and
Vuorinen
,
J.
,
2016
, “
Improvement of Actuation Performance of Dielectric Elastomers by Barium Titanate and Carbon Black Fillers
,”
J. Appl. Polym. Sci.
,
133
(
42
), pp.
14159
14168
.
43.
Moiseev
,
S. G.
,
2010
, “
Active Maxwell–Garnett Composite With the Unit Refractive Index
,”
Phys. B
,
405
(
14
), pp.
3042
3045
.
44.
Bergstrom
,
J. S.
, and
Boyce
,
M. C.
,
1999
, “
Mechanical Behavior of Particle Filled Elastomers
,”
Rubber Chem. Technol.
,
72
(
4
), pp.
633
656
.
45.
Mullins
,
L.
, and
Tobin
,
N.
,
1965
, “
Stress Softening in Rubber Vulcanizates. Part I. Use of a Strain Amplification Factor to Describe the Elastic Behavior of Filler-Reinforced Vulcanized Rubber
,”
J. Appl. Polym. Sci.
,
9
(
9
), pp.
2993
3009
.
46.
Bergström
,
J. S.
, and
Boyce
,
M. C.
,
2000
, “
Large Strain Time-Dependent Behavior of Filled Elastomers
,”
Mech. Mater.
,
32
(
11
), pp.
627
644
.
47.
Boonstra
,
B.
,
1979
, “
Role of Particulate Fillers in Elastomer Reinforcement: A Review
,”
Polymer
,
20
(
6
), pp.
691
704
.
48.
Guth
,
E.
,
1938
, “
On the Hydrodynamical Theory of the Viscosity of Suspensions
,”
Phys. Rev
,
53
, pp.
322
325
.
49.
Alshammari
,
B. A.
,
Hossain
,
M.
,
Alenad
,
A. M.
,
Alharbi
,
A. G.
, and
AlOtaibi
,
B. M.
,
2022
, “
Experimental and Theoretical Analysis of Mechanical Properties of Graphite/Polyethylene Terephthalate Nanocomposites
,”
Polymers
,
14
(
9
), p.
1718
.
50.
Steigmann
,
D.
, and
Pipkin
,
A.
,
1989
, “
Finite Deformations of Wrinkled Membranes
,”
Q. J. Mech. Appl. Math.
,
42
(
3
), pp.
427
440
.
51.
Chen
,
L.
, and
Zheng
,
Y.
,
2012
, “
Study on Curve Fitting Based on Least Square Method
,”
J. Wuxi Inst. Technol.
,
11
(
5
), pp.
52
55
.
52.
Díaz-Calleja
,
R.
,
Riande
,
E.
, and
Sanchis
,
M.
,
2008
, “
On Electromechanical Stability of Dielectric Elastomers
,”
Appl. Phys. Lett.
,
93
(
10
), p.
101902
.
53.
Colonnelli
,
S.
,
Saccomandi
,
G.
, and
Zurlo
,
G.
,
2015
, “
The Role of Material Behavior in the Performances of Electroactive Polymer Energy Harvesters
,”
J. Polym. Sci., Part. B: Polym. Phys.
,
53
(
18
), pp.
1303
1314
.
54.
Blok
,
J.
, and
LeGrand
,
D.
,
1969
, “
Dielectric Breakdown of Polymer Films
,”
ASME J. Appl. Phys.
,
40
(
1
), pp.
288
293
.
55.
Zhao
,
X.
, and
Suo
,
Z.
,
2009
, “
Electromechanical Instability in Semicrystalline Polymers
,”
Appl. Phys. Lett.
,
95
(
3
), p.
031904
.
You do not currently have access to this content.