Abstract

3D/4D printing offers significant flexibility in manufacturing complex structures with a diverse range of mechanical responses, while also posing critical needs in tackling challenging inverse design problems. The rapidly developing machine learning (ML) approach offers new opportunities and has attracted significant interest in the field. In this perspective paper, we highlight recent advancements in utilizing ML for designing printed structures with desired mechanical responses. First, we provide an overview of common forward and inverse problems, relevant types of structures, and design space and responses in 3D/4D printing. Second, we review recent works that have employed a variety of ML approaches for the inverse design of different mechanical responses, ranging from structural properties to active shape changes. Finally, we briefly discuss the main challenges, summarize existing and potential ML approaches, and extend the discussion to broader design problems in the field of 3D/4D printing. This paper is expected to provide foundational guides and insights into the application of ML for 3D/4D printing design.

References

1.
Kuang
,
X.
,
Wu
,
J.
,
Chen
,
K.
,
Zhao
,
Z.
,
Ding
,
Z.
,
Hu
,
F.
,
Fang
,
D.
, and
Qi
,
H. J.
,
2019
, “
Grayscale Digital Light Processing 3D Printing for Highly Functionally Graded Materials
,”
Sci. Adv.
,
5
(
5
), p.
eaav5790
.
2.
Cheng
,
J.
,
Wang
,
R.
,
Sun
,
Z.
,
Liu
,
Q.
,
He
,
X.
,
Li
,
H.
,
Ye
,
H.
, et al
,
2022
, “
Centrifugal Multimaterial 3D Printing of Multifunctional Heterogeneous Objects
,”
Nat. Commun.
,
13
(
1
), p.
7931
.
3.
Yue
,
L.
,
Macrae Montgomery
,
S.
,
Sun
,
X.
,
Yu
,
L.
,
Song
,
Y.
,
Nomura
,
T.
,
Tanaka
,
M.
, and
Jerry Qi
,
H.
,
2023
, “
Single-Vat Single-Cure Grayscale Digital Light Processing 3D Printing of Materials With Large Property Difference and High Stretchability
,”
Nat. Commun.
,
14
(
1
), p.
1251
.
4.
Tibbits
,
S.
,
2013
,
The Emergence of “4D Printing”
. TED Talks.
5.
Ge
,
Q.
,
Qi
,
H. J.
, and
Dunn
,
M. L.
,
2013
, “
Active Materials by Four-Dimension Printing
,”
Appl. Phys. Lett.
,
103
(
13
), p.
131901
.
6.
Ge
,
Q.
,
Sakhaei
,
A. H.
,
Lee
,
H.
,
Dunn
,
C. K.
,
Fang
,
N. X.
, and
Dunn
,
M. L.
,
2016
, “
Multimaterial 4D Printing With Tailorable Shape Memory Polymers
,”
Sci. Rep.
,
6
(
1
), p.
31110
.
7.
Yue
,
L.
,
Sun
,
X.
,
Yu
,
L.
,
Li
,
M.
,
Montgomery
,
S. M.
,
Song
,
Y.
,
Nomura
,
T.
,
Tanaka
,
M.
, and
Qi
,
H. J.
,
2023
, “
Cold-Programmed Shape-Morphing Structures Based on Grayscale Digital Light Processing 4D Printing
,”
Nat. Commun.
,
14
(
1
), p.
5519
.
8.
Kuang
,
X.
,
Roach
,
D. J.
,
Wu
,
J.
,
Hamel
,
C. M.
,
Ding
,
Z.
,
Wang
,
T.
,
Dunn
,
M. L.
, and
Qi
,
H. J.
,
2019
, “
Advances in 4D Printing: Materials and Applications
,”
Adv. Funct. Mater.
,
29
(
2
), p.
1805290
.
9.
Leanza
,
S.
,
Wu
,
S.
,
Sun
,
X.
,
Qi
,
H. J.
, and
Zhao
,
R. R.
,
2023
, “
Active Materials for Functional Origami
,”
Adv. Mater.
, p.
2302066
.
10.
Gibson
,
I.
,
Rosen
,
D.
,
Stucker
,
B.
, and
Khorasani
,
M.
,
2021
, “Design for Additive Manufacturing,”
Additive Manufacturing Technologies
,
Springer International Publishing
,
Cham
, pp.
555
607
.
11.
Yuan
,
C.
,
Lu
,
T.
, and
Wang
,
T. J.
,
2022
, “
Mechanics-Based Design Strategies for 4D Printing: A Review
,”
Forces Mech.
,
7
, p.
100081
.
12.
Wang
,
L.-C.
,
Zhang
,
Q.
,
Zhao
,
Z.
,
Song
,
W. L.
, and
Fang
,
D.
,
2022
, “
A Brief Review on Mechanical Designs for 4D Printing
,”
Soft Sci.
,
1
(
1
), p.
2230001
.
13.
Demoly
,
F.
,
Dunn
,
M. L.
,
Wood
,
K. L.
,
Qi
,
H. J.
, and
André
,
J.-C.
,
2021
, “
The Status, Barriers, Challenges, and Future in Design for 4D Printing
,”
Mater. Des.
,
212
, p.
110193
.
14.
Ze
,
Q.
,
Wu
,
S.
,
Dai
,
J.
,
Leanza
,
S.
,
Ikeda
,
G.
,
Yang
,
P. C.
,
Iaccarino
,
G.
, and
Zhao
,
R. R.
,
2022
, “
Spinning-Enabled Wireless Amphibious Origami Millirobot
,”
Nat. Commun.
,
13
(
1
), p.
3118
.
15.
Sim
,
J.
,
Wu
,
S.
,
Dai
,
J.
, and
Zhao
,
R. R.
,
2023
, “
Magneto-Mechanical Bilayer Metamaterial With Global Area-Preserving Density Tunability for Acoustic Wave Regulation
,”
Adv. Mater.
,
35
(
35
), p.
2303541
.
16.
Wu
,
S.
,
Ze
,
Q.
,
Dai
,
J.
,
Udipi
,
N.
,
Paulino
,
G. H.
, and
Zhao
,
R.
,
2021
, “
Stretchable Origami Robotic Arm With Omnidirectional Bending and Twisting
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
36
), p.
e2110023118
.
17.
Wu
,
S.
,
Yue
,
L.
,
Jin
,
Y.
,
Sun
,
X.
,
Zemelka
,
C.
,
Qi
,
H. J.
, and
Zhao
,
R.
,
2021
, “
Ring Origami: Snap-Folding of Rings With Different Geometries
,”
Adv. Intell. Syst.
,
3
(
9
), p.
2100107
.
18.
Sun
,
X.
,
Wu
,
S.
,
Dai
,
J.
,
Leanza
,
S.
,
Yue
,
L.
,
Yu
,
L.
,
Jin
,
Y.
,
Jerry Qi
,
H.
, and
Zhao
,
R. R.
,
2022
, “
Phase Diagram and Mechanics of Snap-Folding of Ring Origami by Twisting
,”
Int. J. Solids Struct.
,
248
, p.
111685
.
19.
Roach
,
D. J.
,
Sun
,
X.
,
Peng
,
X.
,
Demoly
,
F.
,
Zhou
,
K.
, and
Qi
,
H. J.
,
2022
, “
4D Printed Multifunctional Composites With Cooling-Rate Mediated Tunable Shape Morphing
,”
Adv. Funct. Mater.
,
32
(
36
), p.
2203236
.
20.
Benyahia
,
K.
,
Gomes
,
S.
,
André
,
J.-C.
,
Qi
,
H. J.
, and
Demoly
,
F.
,
2023
, “
Influence of Interlocking Blocks Assembly on the Actuation Time, Shape Change, and Reversibility of Voxel-Based Multi-Material 4D Structures
,”
Smart Mater. Struct.
,
32
(
6
), p.
065011
.
21.
Benyahia
,
K.
,
Seriket
,
H.
,
Prod’hon
,
R.
,
Gomes
,
S.
,
André
,
J.-C.
,
Qi
,
H. J.
, and
Demoly
,
F.
,
2022
, “
A Computational Design Approach for Multi-Material 4D Printing Based on Interlocking Blocks Assembly
,”
Addit. Manuf.
,
58
, p.
102993
.
22.
Chen
,
T.
,
Mueller
,
J.
, and
Shea
,
K.
,
2017
, “
Integrated Design and Simulation of Tunable, Multi-State Structures Fabricated Monolithically With Multi-Material 3D Printing
,”
Sci. Rep.
,
7
(
1
), p.
45671
.
23.
Bodaghi
,
M.
,
Noroozi
,
R.
,
Zolfagharian
,
A.
,
Fotouhi
,
M.
, and
Norouzi
,
S.
,
2019
, “
4D Printing Self-Morphing Structures
,”
Materials
,
12
(
8
), p.
1353
.
24.
Dimassi
,
S.
,
Demoly
,
F.
,
Cruz
,
C.
,
Qi
,
H. J.
,
Kim
,
K.-Y.
,
André
,
J.-C.
, and
Gomes
,
S.
,
2021
, “
An Ontology-Based Framework to Formalize and Represent 4D Printing Knowledge in Design
,”
Comput. Ind.
,
126
, p.
103374
.
25.
Dimassi
,
S.
,
Demoly
,
F.
,
Belkebir
,
H.
,
Cruz
,
C.
,
Kim
,
K.-Y.
,
Gomes
,
S.
,
Qi
,
H. J.
, and
André
,
J.-C.
,
2023
, “
A Knowledge Recommendation Approach in Design for Multi-Material 4D Printing Based on Semantic Similarity Vector Space Model and Case-Based Reasoning
,”
Comput. Ind.
,
145
, p.
103824
.
26.
Gu
,
G. X.
,
Chen
,
C.-T.
,
Richmond
,
D. J.
, and
Buehler
,
M. J.
,
2018
, “
Bioinspired Hierarchical Composite Design Using Machine Learning: Simulation, Additive Manufacturing, and Experiment
,”
Mater. Horiz.
,
5
(
5
), pp.
939
945
.
27.
Montgomery
,
S. M.
,
Yue
,
L.
,
Song
,
Y.
,
Nomura
,
T.
,
Sun
,
X.
,
Tanaka
,
M.
, and
Qi
,
H. J.
,
2023
, “
Locally Patterned Anisotropy Using Grayscale Vat Photopolymerization
,”
Addit. Manuf.
,
73
, p.
103687
.
28.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscip. Optim.
,
48
(
6
), pp.
1031
1055
.
29.
Liu
,
J.
,
Gaynor
,
A. T.
,
Chen
,
S.
,
Kang
,
Z.
,
Suresh
,
K.
,
Takezawa
,
A.
,
Li
,
L.
, et al
,
2018
, “
Current and Future Trends in Topology Optimization for Additive Manufacturing
,”
Struct. Multidiscip. Optim.
,
57
(
6
), pp.
2457
2483
.
30.
Zhu
,
J.
,
Zhou
,
H.
,
Wang
,
C.
,
Zhou
,
L.
,
Yuan
,
S.
, and
Zhang
,
W.
,
2021
, “
A Review of Topology Optimization for Additive Manufacturing: Status and Challenges
,”
Chin. J. Aeronaut.
,
34
(
1
), pp.
91
110
.
31.
Wu
,
J.
,
Sigmund
,
O.
, and
Groen
,
J. P.
,
2021
, “
Topology Optimization of Multi-Scale Structures: A Review
,”
Struct. Multidiscip. Optim.
,
63
(
3
), pp.
1455
1480
.
32.
Sanders
,
E. D.
,
Pereira
,
A.
, and
Paulino
,
G. H.
,
2021
, “
Optimal and Continuous Multilattice Embedding
,”
Sci. Adv.
,
7
(
16
), p.
eabf4838
.
33.
Senhora
,
F. V.
,
Sanders
,
E. D.
, and
Paulino
,
G. H.
,
2022
, “
Optimally-Tailored Spinodal Architected Materials for Multiscale Design and Manufacturing
,”
Adv. Mater.
,
34
(
26
), p.
2109304
.
34.
Deng
,
J.
, and
Chen
,
W.
,
2017
, “
Concurrent Topology Optimization of Multiscale Structures With Multiple Porous Materials Under Random Field Loading Uncertainty
,”
Struct. Multidiscip. Optim.
,
56
(
1
), pp.
1
19
.
35.
Zhu
,
B.
,
Skouras
,
M.
,
Chen
,
D.
, and
Matusik
,
W.
,
2017
, “
Two-Scale Topology Optimization With Microstructures
,”
ACM Trans. Graph.
,
36
(
4
), p.
1
.
36.
Boddeti
,
N.
,
Ding
,
Z.
,
Kaijima
,
S.
,
Maute
,
K.
, and
Dunn
,
M. L.
,
2018
, “
Simultaneous Digital Design and Additive Manufacture of Structures and Materials
,”
Sci. Rep.
,
8
(
1
), p.
15560
.
37.
Boddeti
,
N.
,
Tang
,
Y.
,
Maute
,
K.
,
Rosen
,
D. W.
, and
Dunn
,
M. L.
,
2020
, “
Optimal Design and Manufacture of Variable Stiffness Laminated Continuous Fiber Reinforced Composites
,”
Sci. Rep.
,
10
(
1
), p.
16507
.
38.
Boddeti
,
N.
,
Van Truong
,
T.
,
Joseph
,
V. S.
,
Stalin
,
T.
,
Calais
,
T.
,
Lee
,
S. Y.
,
Dunn
,
M. L.
, and
Valdivia y Alvarado
,
P.
,
2021
, “
Optimal Soft Composites for Under-Actuated Soft Robots
,”
Adv. Mater. Technol.
,
6
(
8
), p.
2100361
.
39.
Li
,
W.
,
Wang
,
F.
,
Sigmund
,
O.
, and
Zhang
,
X. S.
,
2022
, “
Digital Synthesis of Free-Form Multimaterial Structures for Realization of Arbitrary Programmed Mechanical Responses
,”
Proc. Natl. Acad. Sci. U. S. A.
,
119
(
10
), p.
e2120563119
.
40.
Maute
,
K.
,
Tkachuk
,
A.
,
Wu
,
J.
,
Jerry Qi
,
H.
,
Ding
,
Z.
, and
Dunn
,
M. L.
,
2015
, “
Level Set Topology Optimization of Printed Active Composites
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111402
.
41.
Geiss
,
M. J.
,
Boddeti
,
N.
,
Weeger
,
O.
,
Maute
,
K.
, and
Dunn
,
M. L.
,
2019
, “
Combined Level-Set-XFEM-Density Topology Optimization of Four-Dimensional Printed Structures Undergoing Large Deformation
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051405
.
42.
Tanaka
,
M.
,
Montgomery
,
S. M.
,
Yue
,
L.
,
Wei
,
Y.
,
Song
,
Y.
,
Nomura
,
T.
, and
Qi
,
H. J.
,
2023
, “
Turing Pattern-Based Design and Fabrication of Inflatable Shape-Morphing Structures
,”
Sci. Adv.
,
9
(
6
), p.
eade4381
.
43.
Weeger
,
O.
,
Narayanan
,
B.
, and
Dunn
,
M. L.
,
2019
, “
Isogeometric Shape Optimization of Nonlinear, Curved 3D Beams and Beam Structures
,”
Comput. Methods Appl. Mech. Eng.
,
345
, pp.
26
51
.
44.
Weeger
,
O.
,
2022
, “
Isogeometric Sizing and Shape Optimization of 3D Beams and Lattice Structures at Large Deformations
,”
Struct. Multidiscip. Optim.
,
65
(
2
), p.
43
.
45.
Lumpe
,
T. S.
, and
Shea
,
K.
,
2021
, “
Computational Design of 3D-Printed Active Lattice Structures for Reversible Shape Morphing
,”
J. Mater. Res.
,
36
(
18
), pp.
3642
3655
.
46.
Zhao
,
Z.
, and
Zhang
,
X. S.
,
2022
, “
Topology Optimization of Hard-Magnetic Soft Materials
,”
J. Mech. Phys. Solids
,
158
, p.
104628
.
47.
Li
,
W.
,
Jia
,
Y.
,
Wang
,
F.
,
Sigmund
,
O.
, and
Zhang
,
X. S.
,
2023
, “
Programming and Physical Realization of Extreme Three-Dimensional Responses of Metastructures Under Large Deformations
,”
Int. J. Eng. Sci.
,
191
, p.
103881
.
48.
Yuhn
,
C.
,
Sato
,
Y.
,
Kobayashi
,
H.
,
Kawamoto
,
A.
, and
Nomura
,
T.
,
2023
, “
4D Topology Optimization: Integrated Optimization of the Structure and Self-Actuation of Soft Bodies for Dynamic Motions
,”
Comput. Methods Appl. Mech. Eng.
,
414
, p.
116187
.
49.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
50.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
,
Cambridge, MA
.
51.
Guo
,
K.
,
Yang
,
Z.
,
Yu
,
C.-H.
, and
Buehler
,
M. J.
,
2021
, “
Artificial Intelligence and Machine Learning in Design of Mechanical Materials
,”
Mater. Horiz.
,
8
(
4
), pp.
1153
1172
.
52.
Brodnik
,
N. R.
,
Muir
,
C.
,
Tulshibagwale
,
N.
,
Rossin
,
J.
,
Echlin
,
M. P.
,
Hamel
,
C. M.
,
Kramer
,
S. L. B.
, et al
,
2023
, “
Perspective: Machine Learning in Experimental Solid Mechanics
,”
J. Mech. Phys. Solids
,
173
, p.
105231
.
53.
Jin
,
H.
,
Zhang
,
E.
, and
Espinosa
,
H. D.
,
2023
, “
Recent Advances and Applications of Machine Learning in Experimental Solid Mechanics: A Review
,”
ASME Appl. Mech. Rev.
,
75
(
6
), p.
061001
.
54.
Jin
,
Z.
,
Zhang
,
Z.
,
Demir
,
K.
, and
Gu
,
G. X.
,
2020
, “
Machine Learning for Advanced Additive Manufacturing
,”
Matter
,
3
(
5
), pp.
1541
1556
.
55.
Meng
,
L.
,
McWilliams
,
B.
,
Jarosinski
,
W.
,
Park
,
H.-Y.
,
Jung
,
Y.-G.
,
Lee
,
J.
, and
Zhang
,
J.
,
2020
, “
Machine Learning in Additive Manufacturing: A Review
,”
JOM
,
72
(
6
), pp.
2363
2377
.
56.
Wang
,
C.
,
Tan
,
X. P.
,
Tor
,
S. B.
, and
Lim
,
C. S.
,
2020
, “
Machine Learning in Additive Manufacturing: State-of-the-Art and Perspectives
,”
Addit. Manuf.
,
36
, p.
101538
.
57.
Goh
,
G. D.
,
Sing
,
S. L.
, and
Yeong
,
W. Y.
,
2021
, “
A Review on Machine Learning in 3D Printing: Applications, Potential, and Challenges
,”
Artif. Intell. Rev.
,
54
(
1
), pp.
63
94
.
58.
Qin
,
J.
,
Hu
,
F.
,
Liu
,
Y.
,
Witherell
,
P.
,
Wang
,
C. C. L.
,
Rosen
,
D. W.
,
Simpson
,
T. W.
,
Lu
,
Y.
, and
Tang
,
Q.
,
2022
, “
Research and Application of Machine Learning for Additive Manufacturing
,”
Addit. Manuf.
,
52
, p.
102691
.
59.
Roach
,
D. J.
,
Rohskopf
,
A.
,
Hamel
,
C. M.
,
Reinholtz
,
W. D.
,
Bernstein
,
R.
,
Qi
,
H. J.
, and
Cook
,
A. W.
,
2021
, “
Utilizing Computer Vision and Artificial Intelligence Algorithms to Predict and Design the Mechanical Compression Response of Direct Ink Write 3D Printed Foam Replacement Structures
,”
Addit. Manuf.
,
41
, p.
101950
.
60.
Killgore
,
J. P.
,
Kolibaba
,
T. J.
,
Caplins
,
B. W.
,
Higgins
,
C. I.
, and
Rezac
,
J. D.
,
2023
, “
A Data-Driven Approach to Complex Voxel Predictions in Grayscale Digital Light Processing Additive Manufacturing Using U-Nets and Generative Adversarial Networks
,”
Small
, p.
2301987
.
61.
Roach
,
D. J.
,
Rohskopf
,
A.
,
Leguizamon
,
S.
,
Appelhans
,
L.
, and
Cook
,
A. W.
,
2023
, “
Invertible Neural Networks for Real-Time Control of Extrusion Additive Manufacturing
,”
Addit. Manuf.
,
74
, p.
103742
.
62.
Liu
,
Y.
,
Zhao
,
T.
,
Ju
,
W.
, and
Shi
,
S.
,
2017
, “
Materials Discovery and Design Using Machine Learning
,”
J. Materiomics
,
3
(
3
), pp.
159
177
.
63.
Chen
,
G.
,
Shen
,
Z.
,
Iyer
,
A.
,
Ghumman
,
U. F.
,
Tang
,
S.
,
Bi
,
J.
,
Chen
,
W.
, and
Li
,
Y.
,
2020
, “
Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges
,”
Polymers
,
12
(
1
), p.
163
.
64.
Batra
,
R.
,
Song
,
L.
, and
Ramprasad
,
R.
,
2021
, “
Emerging Materials Intelligence Ecosystems Propelled by Machine Learning
,”
Nat. Rev. Mater.
,
6
(
8
), pp.
655
678
.
65.
Yan
,
C.
, and
Li
,
G.
,
2023
, “
The Rise of Machine Learning in Polymer Discovery
,”
Adv. Intell. Syst.
,
5
(
4
), p.
2200243
.
66.
Cecen
,
A.
,
Dai
,
H.
,
Yabansu
,
Y. C.
,
Kalidindi
,
S. R.
, and
Song
,
L.
,
2018
, “
Material Structure-Property Linkages Using Three-Dimensional Convolutional Neural Networks
,”
Acta Mater.
,
146
, pp.
76
84
.
67.
Li
,
X.
,
Liu
,
Z.
,
Cui
,
S.
,
Luo
,
C.
,
Li
,
C.
, and
Zhuang
,
Z.
,
2019
, “
Predicting the Effective Mechanical Property of Heterogeneous Materials by Image Based Modeling and Deep Learning
,”
Comput. Methods Appl. Mech. Eng.
,
347
, pp.
735
753
.
68.
Gu
,
G. X.
,
Chen
,
C.-T.
, and
Buehler
,
M. J.
,
2018
, “
De Novo Composite Design Based on Machine Learning Algorithm
,”
Extreme Mech. Lett.
,
18
, pp.
19
28
.
69.
Yu
,
C.-H.
,
Qin
,
Z.
, and
Buehler
,
M. J.
,
2019
, “
Artificial Intelligence Design Algorithm for Nanocomposites Optimized for Shear Crack Resistance
,”
Nano Futures
,
3
(
3
), p.
035001
.
70.
Yang
,
Z.
,
Yu
,
C.-H.
, and
Buehler
,
M. J.
,
2021
, “
Deep Learning Model to Predict Complex Stress and Strain Fields in Hierarchical Composites
,”
Sci. Adv.
,
7
(
15
), p.
eabd7416
.
71.
Zhang
,
E.
,
Dao
,
M.
,
Karniadakis
,
G. E.
, and
Suresh
,
S.
,
2022
, “
Analyses of Internal Structures and Defects in Materials Using Physics-Informed Neural Networks
,”
Sci. Adv.
,
8
(
7
), p.
eabk0644
.
72.
Wang
,
L.
,
Chan
,
Y.-C.
,
Ahmed
,
F.
,
Liu
,
Z.
,
Zhu
,
P.
, and
Chen
,
W.
,
2020
, “
Deep Generative Modeling for Mechanistic-Based Learning and Design of Metamaterial Systems
,”
Comput. Methods Appl. Mech. Eng.
,
372
, p.
113377
.
73.
Kumar
,
S.
,
Tan
,
S.
,
Zheng
,
L.
, and
Kochmann
,
D. M.
,
2020
, “
Inverse-Designed Spinodoid Metamaterials
,”
Npj Comput. Mater.
,
6
(
1
), p.
73
.
74.
Chen
,
C.-T.
, and
Gu
,
G. X.
,
2020
, “
Generative Deep Neural Networks for Inverse Materials Design Using Backpropagation and Active Learning
,”
Adv. Sci.
,
7
(
5
), p.
1902607
.
75.
Sui
,
F.
,
Guo
,
R.
,
Zhang
,
Z.
,
Gu
,
G. X.
, and
Lin
,
L.
,
2021
, “
Deep Reinforcement Learning for Digital Materials Design
,”
ACS Mater. Lett.
,
3
(
10
), pp.
1433
1439
.
76.
Yu
,
C.-H.
,
Tseng
,
B.
,
Yang
,
Z.
,
Tung
,
C.
,
Zhao
,
E.
,
Ren
,
Z.
,
Yu
,
S.
,
Chen
,
P.
,
Chen
,
C.
, and
Buehler
,
M. J.
,
2022
, “
Hierarchical Multiresolution Design of Bioinspired Structural Composites Using Progressive Reinforcement Learning
,”
Adv. Theory Simul.
,
5
(
11
), p.
2200459
.
77.
Rawat
,
S.
, and
Shen
,
M.
,
2018
, “
A Novel Topology Design Approach Using an Integrated Deep Learning Network Architecture
,” arXiv preprint arXiv:1808.02334.
78.
Yan
,
J.
,
Zhang
,
Q.
,
Xu
,
Q.
,
Fan
,
Z.
,
Li
,
H.
,
Sun
,
W.
, and
Wang
,
G.
,
2022
, “
Deep Learning Driven Real Time Topology Optimisation Based on Initial Stress Learning
,”
Adv. Eng. Inform.
,
51
, p.
101472
.
79.
Woldseth
,
R. V.
,
Aage
,
N.
,
Bærentzen
,
J. A.
, and
Sigmund
,
O.
,
2022
, “
On the Use of Artificial Neural Networks in Topology Optimisation
,”
Struct. Multidiscip. Optim.
,
65
(
10
), p.
294
.
80.
Nie
,
Z.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2019
, “
Stress Field Prediction in Cantilevered Structures Using Convolutional Neural Networks
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011002
.
81.
Yang
,
Z.
,
Yu
,
C.-H.
,
Guo
,
K.
, and
Buehler
,
M. J.
,
2021
, “
End-to-End Deep Learning Method to Predict Complete Strain and Stress Tensors for Complex Hierarchical Composite Microstructures
,”
J. Mech. Phys. Solids
,
154
, p.
104506
.
82.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
83.
Zhang
,
E.
,
Yin
,
M.
, and
Karniadakis
,
G. E.
,
2020
, “
Physics-Informed Neural Networks for Nonhomogeneous Material Identification in Elasticity Imaging
,” arXiv preprint arXiv:2009.04525.
84.
Mowlavi
,
S.
, and
Kamrin
,
K.
,
2023
, “
Topology Optimization With Physics-Informed Neural Networks: Application to Noninvasive Detection of Hidden Geometries
,” arXiv preprint arXiv:2303.09280.
85.
Hamel
,
C. M.
,
Long
,
K. N.
, and
Kramer
,
S. L. B.
,
2023
, “
Calibrating Constitutive Models With Full-Field Data via Physics Informed Neural Networks
,”
Strain
,
59
(
2
), p.
e12431
.
86.
Chen
,
C.-T.
, and
Gu
,
G. X.
,
2021
, “
Learning Hidden Elasticity With Deep Neural Networks
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
31
), p.
e2102721118
.
87.
Kamali
,
A.
,
Sarabian
,
M.
, and
Laksari
,
K.
,
2023
, “
Elasticity Imaging Using Physics-Informed Neural Networks: Spatial Discovery of Elastic Modulus and Poisson’s Ratio
,”
Acta Biomater.
,
155
, pp.
400
409
.
88.
Chen
,
C.-T.
, and
Gu
,
G. X.
,
2023
, “
Physics-Informed Deep-Learning for Elasticity: Forward, Inverse, and Mixed Problems
,”
Adv. Sci.
,
10
(
18
), p.
2300439
.
89.
Liu
,
C.
, and
Wu
,
H.
,
2023
, “
cv-PINN: Efficient Learning of Variational Physics-Informed Neural Network With Domain Decomposition
,”
Extreme Mech. Lett.
,
63
, p.
102051
.
90.
Grossmann
,
T. G.
,
Komorowska
,
U. J.
,
Latz
,
J.
, and
Schönlieb
,
C. B.
,
2023
, “
Can Physics-Informed Neural Networks Beat the Finite Element Method?
” arXiv preprint arXiv:2302.04107.
91.
Liu
,
Y.
,
Chen
,
Y.
, and
Ding
,
B.
,
2022
, “
Deep Learning in Frequency Domain for Inverse Identification of Nonhomogeneous Material Properties
,”
J. Mech. Phys. Solids
,
168
, p.
105043
.
92.
Mao
,
Y.
,
He
,
Q.
, and
Zhao
,
X.
,
2020
, “
Designing Complex Architectured Materials With Generative Adversarial Networks
,”
Sci. Adv.
,
6
(
17
), p.
eaaz4169
.
93.
Challapalli
,
A.
,
Patel
,
D.
, and
Li
,
G.
,
2021
, “
Inverse Machine Learning Framework for Optimizing Lightweight Metamaterials
,”
Mater. Des.
,
208
, p.
109937
.
94.
Challapalli
,
A.
, and
Li
,
G.
,
2021
, “
Machine Learning Assisted Design of New Lattice Core for Sandwich Structures With Superior Load Carrying Capacity
,”
Sci. Rep.
,
11
(
1
), p.
18552
.
95.
Challapalli
,
A.
,
Konlan
,
J.
, and
Li
,
G.
,
2023
, “
Inverse Machine Learning Discovered Metamaterials With Record High Recovery Stress
,”
Int. J. Mech. Sci.
,
244
, p.
108029
.
96.
Wang
,
L.
,
Boddapati
,
J.
,
Liu
,
K.
,
Zhu
,
P.
,
Daraio
,
C.
, and
Chen
,
W.
,
2022
, “
Mechanical Cloak via Data-Driven Aperiodic Metamaterial Design
,”
Proc. Natl. Acad. Sci. U. S. A.
,
119
(
13
), p.
e2122185119
.
97.
Wang
,
L.
,
Tao
,
S.
,
Zhu
,
P.
, and
Chen
,
W.
,
2020
, “
Data-Driven Multiscale Topology Optimization Using Multi-Response Latent Variable Gaussian Process
,”
Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 11A: 46th Design Automation Conference (DAC)
,
Virtual, Online
,
Aug. 17–19
, p. V11AT11A057.
98.
Yu
,
Z.
,
Thakolkaran
,
P.
,
Shea
,
K.
, and
Stanković
,
T.
,
2023
, “
Artificial Neural Network Supported Design of a Lattice-Based Artificial Spinal Disc for Restoring Patient-Specific Anisotropic Behaviors
,”
Comput. Biol. Med.
,
152
, p.
106475
.
99.
Bastek
,
J.-H.
,
Kumar
,
S.
,
Telgen
,
B.
,
Glaesener
,
R. N.
, and
Kochmann
,
D. M.
,
2022
, “
Inverting the Structure-Property Map of Truss Metamaterials by Deep Learning
,”
Proc. Natl. Acad. Sci. U. S. A.
,
119
(
1
), p.
e2111505119
.
100.
Van’t Sant
,
S.
,
Thakolkaran
,
P.
,
Martínez
,
J.
, and
Kumar
,
S.
,
2023
, “
Inverse-Designed Growth-Based Cellular Metamaterials
,”
Mech. Mater.
,
182
, p.
104668
.
101.
Zheng
,
L.
,
Kumar
,
S.
, and
Kochmann
,
D. M.
,
2021
, “
Data-Driven Topology Optimization of Spinodoid Metamaterials With Seamlessly Tunable Anisotropy
,”
Comput. Methods Appl. Mech. Eng.
,
383
, p.
113894
.
102.
Wang
,
Y.
,
Zeng
,
Q.
,
Wang
,
J.
,
Li
,
Y.
, and
Fang
,
D.
,
2022
, “
Inverse Design of Shell-Based Mechanical Metamaterial With Customized Loading Curves Based on Machine Learning and Genetic Algorithm
,”
Comput. Methods Appl. Mech. Eng.
,
401
, p.
115571
.
103.
Deng
,
B.
,
Zareei
,
A.
,
Ding
,
X.
,
Weaver
,
J. C.
,
Rycroft
,
C. H.
, and
Bertoldi
,
K.
,
2022
, “
Inverse Design of Mechanical Metamaterials With Target Nonlinear Response via a Neural Accelerated Evolution Strategy
,”
Adv. Mater.
,
34
(
41
), p.
2206238
.
104.
Ha
,
C. S.
,
Yao
,
D.
,
Xu
,
Z.
,
Liu
,
C.
,
Liu
,
H.
,
Elkins
,
D.
,
Kile
,
M.
, et al
,
2023
, “
Rapid Inverse Design of Metamaterials Based on Prescribed Mechanical Behavior Through Machine Learning
,”
Nat. Commun.
,
14
(
1
), p.
5765
.
105.
Bastek
,
J. H.
, and
Kochmann
,
D. M.
,
2023
, “
Inverse-Design of Nonlinear Mechanical Metamaterials via Video Denoising Diffusion Models
,”
arXiv preprint
. https://arxiv.org/abs/2305.19836
106.
Bessa
,
M. A.
,
Glowacki
,
P.
, and
Houlder
,
M.
,
2019
, “
Bayesian Machine Learning in Metamaterial Design: Fragile Becomes Supercompressible
,”
Adv. Mater.
,
31
(
48
), p.
1904845
.
107.
Li
,
X.
,
Ning
,
S.
,
Liu
,
Z.
,
Yan
,
Z.
,
Luo
,
C.
, and
Zhuang
,
Z.
,
2020
, “
Designing Phononic Crystal With Anticipated Band Gap Through a Deep Learning Based Data-Driven Method
,”
Comput. Methods Appl. Mech. Eng.
,
361
, p.
112737
.
108.
Wu
,
L.
,
Liu
,
L.
,
Wang
,
Y.
,
Zhai
,
Z.
,
Zhuang
,
H.
,
Krishnaraju
,
D.
,
Wang
,
Q.
, and
Jiang
,
H.
,
2020
, “
A Machine Learning-Based Method to Design Modular Metamaterials
,”
Extreme Mech. Lett.
,
36
, p.
100657
.
109.
He
,
L.
,
Wen
,
Z.
,
Jin
,
Y.
,
Torrent
,
D.
,
Zhuang
,
X.
, and
Rabczuk
,
T.
,
2021
, “
Inverse Design of Topological Metaplates for Flexural Waves With Machine Learning
,”
Mater. Des.
,
199
, p.
109390
.
110.
Wang
,
L.
,
van Beek
,
A.
,
Da
,
D.
,
Chan
,
Y.-C.
,
Zhu
,
P.
, and
Chen
,
W.
,
2022
, “
Data-Driven Multiscale Design of Cellular Composites With Multiclass Microstructures for Natural Frequency Maximization
,”
Compos. Struct.
,
280
, p.
114949
.
111.
Muhammad
,
Kennedy
,
J.
, and
Lim
,
C. W.
,
2022
, “
Machine Learning and Deep Learning in Phononic Crystals and Metamaterials—A Review
,”
Mater. Today Commun.
,
33
, p.
104606
.
112.
Hamel
,
C. M.
,
Roach
,
D. J.
,
Long
,
K. N.
,
Demoly
,
F.
,
Dunn
,
M. L.
, and
Qi
,
H. J.
,
2019
, “
Machine-Learning Based Design of Active Composite Structures for 4D Printing
,”
Smart Mater. Struct.
,
28
(
6
), p.
065005
.
113.
Wu
,
S.
,
Hamel
,
C. M.
,
Ze
,
Q.
,
Yang
,
F.
,
Qi
,
H. J.
, and
Zhao
,
R.
,
2020
, “
Evolutionary Algorithm-Guided Voxel-Encoding Printing of Functional Hard-Magnetic Soft Active Materials
,”
Adv. Intell. Syst.
,
2
(
8
), p.
2000060
.
114.
Athinarayanarao
,
D.
,
Prod’hon
,
R.
,
Chamoret
,
D.
,
Qi
,
H. J.
,
Bodaghi
,
M.
,
André
,
J.-C.
, and
Demoly
,
F.
,
2023
, “
Computational Design for 4D Printing of Topology Optimized Multi-Material Active Composites
,”
Npj Comput. Mater.
,
9
(
1
), p.
1
.
115.
Sossou
,
G.
,
Demoly
,
F.
,
Belkebir
,
H.
,
Qi
,
H. J.
,
Gomes
,
S.
, and
Montavon
,
G.
,
2019
, “
Design for 4D Printing: A Voxel-Based Modeling and Simulation of Smart Materials
,”
Mater. Des.
,
175
, p.
107798
.
116.
Sossou
,
G.
,
Demoly
,
F.
,
Belkebir
,
H.
,
Qi
,
H. J.
,
Gomes
,
S.
, and
Montavon
,
G.
,
2019
, “
Design for 4D Printing: Modeling and Computation of Smart Materials Distributions
,”
Mater. Des.
,
181
, p.
108074
.
117.
Wang
,
L.
,
Kim
,
Y.
,
Guo
,
C. F.
, and
Zhao
,
X.
,
2020
, “
Hard-Magnetic Elastica
,”
J. Mech. Phys. Solids
,
142
, p.
104045
.
118.
Wang
,
L.
,
Zheng
,
D.
,
Harker
,
P.
,
Patel
,
A. B.
,
Guo
,
C. F.
, and
Zhao
,
X.
,
2021
, “
Evolutionary Design of Magnetic Soft Continuum Robots
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
21
), p.
e2021922118
.
119.
Zhang
,
Z.
, and
Gu
,
G. X.
,
2020
, “
Finite-Element-Based Deep-Learning Model for Deformation Behavior of Digital Materials
,”
Adv. Theory Simul.
,
3
(
7
), p.
2000031
.
120.
Sun
,
X.
,
Yue
,
L.
,
Yu
,
L.
,
Shao
,
H.
,
Peng
,
X.
,
Zhou
,
K.
,
Demoly
,
F.
,
Zhao
,
R.
, and
Qi
,
H. J.
,
2022
, “
Machine Learning-Evolutionary Algorithm Enabled Design for 4D-Printed Active Composite Structures
,”
Adv. Funct. Mater.
,
32
(
10
), p.
2109805
.
121.
Ma
,
C.
,
Chang
,
Y.
,
Wu
,
S.
, and
Zhao
,
R. R.
,
2022
, “
Deep Learning-Accelerated Designs of Tunable Magneto-Mechanical Metamaterials
,”
ACS Appl. Mater. Interfaces
,
14
(
29
), pp.
33892
33902
.
122.
Forte
,
A. E.
,
Hanakata
,
P. Z.
,
Jin
,
L.
,
Zari
,
E.
,
Zareei
,
A.
,
Fernandes
,
M. C.
,
Sumner
,
L.
,
Alvarez
,
J.
, and
Bertoldi
,
K.
,
2022
, “
Inverse Design of Inflatable Soft Membranes Through Machine Learning
,”
Adv. Funct. Mater.
,
32
(
16
), p.
2111610
.
123.
Cheng
,
X.
,
Fan
,
Z.
,
Yao
,
S.
,
Jin
,
T.
,
Lv
,
Z.
,
Lan
,
Y.
,
Bo
,
R.
, et al
,
2023
, “
Programming 3D Curved Mesosurfaces Using Microlattice Designs
,”
Science
,
379
(
6638
), pp.
1225
1232
.
124.
Wilt
,
J. K.
,
Yang
,
C.
, and
Gu
,
G. X.
,
2020
, “
Accelerating Auxetic Metamaterial Design With Deep Learning
,”
Adv. Eng. Mater.
,
22
(
5
), p.
1901266
.
125.
Zolfagharian
,
A.
,
Durran
,
L.
,
Gharaie
,
S.
,
Rolfe
,
B.
,
Kaynak
,
A.
, and
Bodaghi
,
M.
,
2021
, “
4D Printing Soft Robots Guided by Machine Learning and Finite Element Models
,”
Sens. Actuators, A
,
328
, p.
112774
.
126.
Jin
,
T.
,
Cheng
,
X.
,
Xu
,
S.
,
Lai
,
Y.
, and
Zhang
,
Y.
,
2023
, “
Deep Learning Aided Inverse Design of the Buckling-Guided Assembly for 3D Frame Structures
,”
J. Mech. Phys. Solids
,
179
, p.
105398
.
127.
Alderete
,
N. A.
,
Pathak
,
N.
, and
Espinosa
,
H. D.
,
2022
, “
Machine Learning Assisted Design of Shape-Programmable 3D Kirigami Metamaterials
,”
Npj Comput. Mater.
,
8
(
1
), p.
191
.
128.
Zeng
,
Q.
,
Zhao
,
Z.
,
Lei
,
H.
, and
Wang
,
P.
,
2023
, “
A Deep Learning Approach for Inverse Design of Gradient Mechanical Metamaterials
,”
Int. J. Mech. Sci.
,
240
, p.
107920
.
129.
Brown
,
N. K.
,
Garland
,
A. P.
,
Fadel
,
G. M.
, and
Li
,
G.
,
2022
, “
Deep Reinforcement Learning for Engineering Design Through Topology Optimization of Elementally Discretized Design Domains
,”
Mater. Des.
,
218
, p.
110672
.
130.
Kumar
,
S.
, and
Kochmann
,
D. M.
,
2022
, “What Machine Learning Can Do for Computational Solid Mechanics,”
Current Trends and Open Problems in Computational Mechanics
,
F.
Aldakheel
, ed.,
Springer International Publishing
,
Cham
, pp.
275
285
.
131.
Ward
,
L.
,
Aykol
,
M.
,
Blaiszik
,
B.
,
Foster
,
I.
,
Meredig
,
B.
,
Saal
,
J.
, and
Suram
,
S.
,
2018
, “
Strategies for Accelerating the Adoption of Materials Informatics
,”
MRS Bull.
,
43
(
9
), pp.
683
689
.
132.
Wang
,
A. Y.-T.
,
Murdock
,
R. J.
,
Kauwe
,
S. K.
,
Oliynyk
,
A. O.
,
Gurlo
,
A.
,
Brgoch
,
J.
,
Persson
,
K. A.
, and
Sparks
,
T. D.
,
2020
, “
Machine Learning for Materials Scientists: An Introductory Guide Toward Best Practices
,”
Chem. Mater.
,
32
(
12
), pp.
4954
4965
.
133.
Warren
,
J. A.
,
2018
, “
The Materials Genome Initiative and Artificial Intelligence
,”
MRS Bull.
,
43
(
6
), pp.
452
457
.
134.
Liu
,
S.
,
Kappes
,
B. B.
,
Amin-ahmadi
,
B.
,
Benafan
,
O.
,
Zhang
,
X.
, and
Stebner
,
A. P.
,
2021
, “
Physics-Informed Machine Learning for Composition—Process—Property Design: Shape Memory Alloy Demonstration
,”
Appl. Mater. Today
,
22
, p.
100898
.
135.
Zhang
,
Z.
, and
Gu
,
G. X.
,
2021
, “
Physics-Informed Deep Learning for Digital Materials
,”
Theor. Appl. Mech. Lett.
,
11
(
1
), p.
100220
.
136.
Jiang
,
J.
,
Xiong
,
Y.
,
Zhang
,
Z.
, and
Rosen
,
D. W.
,
2022
, “
Machine Learning Integrated Design for Additive Manufacturing
,”
J. Intell. Manuf.
,
33
(
4
), pp.
1073
1086
.
137.
Montgomery
,
S. M.
,
Demoly
,
F.
,
Zhou
,
K.
, and
Qi
,
H. J.
,
2023
, “
Pixel-Level Grayscale Manipulation to Improve Accuracy in Digital Light Processing 3D Printing
,”
Adv. Funct. Mater.
,
33
(
17
), p.
2213252
.
You do not currently have access to this content.