Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Many elastic systems localize under applied displacement, precipitating into regions of lower and higher strain; further displacement is accommodated by growth of the high strain region at a constant load. Such systems can be studied as propagating instabilities, focusing on the work required to propagate the high strain region, or as two-phase energy minimization problems. It is shown that the Maxwell “equal-areas” construction, and the related common tangent construction, provide the solution to either approach. A new, graphical, proof of the Maxwell equal-areas construction using total strain energy diagrams is presented. Tape-springs are investigated as a case study, with localization presenting as the formation of elastic folds—developable regions with high curvature. One notable property of tape-spring folds is that the fold radius is approximately equal to the initial transverse radius. This result was first proven by Rimrott, and later improved by Calladine and Seffen. A further improvement is obtained here by application of the common tangent construction, and all solutions are shown to be approximations to the Maxwell equal-areas construction in the limit of zero thickness.

References

1.
Clerk-Maxwell
,
J.
,
1875
, “
On the Dynamical Evidence of the Molecular Constitution of Bodies
,”
J. Chem. Soc.
,
28
, pp.
493
508
.
2.
Van der Waals
,
J. D.
,
1873
, “
Over de Continuiteit van den Gas-en Vloeistoftoestand
,” Ph.D. thesis,
University of Leiden
,
Leiden
.
3.
Ericksen
,
J. L.
,
1975
, “
Equilibrium of Bars
,”
J. Elast.
,
5
(
3–4
), pp.
191
201
.
4.
Truskinovsky
,
L.
, and
Zanzotto
,
G.
,
1996
, “
Ericksen’s Bar Revisited: Energy Wiggles
,”
J. Mech. Phys. Solids
,
44
(
8
), pp.
1371
1408
.
5.
Seffen
,
K. A.
, and
Pellegrino
,
S.
,
1999
, “
Deployment Dynamics of Tape-Springs
,”
Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci.
,
455
(
1983
), pp.
1003
1048
.
6.
Miura
,
K.
, and
Pellegrino
,
S.
,
2020
,
Forms and Concepts for Lightweight Structures
,
Cambridge University Press
,
Cambridge, UK
.
7.
Fernandez
,
J. M.
,
Schenk
,
M.
,
Prassinos
,
G.
,
Lappas
,
V. J.
, and
Erb
,
S. O.
,
2013
, “
Deployment Mechanisms of a Gossamer Satellite Deorbiter
,”
15th European Space Mechanisms and Tribology Symposium
,
Noordwijk, The Netherlands
,
Sept. 25–27
.
8.
Fernandez
,
J. M.
,
Viquerat
,
A.
,
Lappas
,
V. J.
, and
Daton-Lovett
,
A. J.
,
2014
, “
Bistable Over the Whole Length (BOWL) CFRP Booms for Solar Sails
,”
Third International Symposium on Solar Sailing
,
Glasgow, UK
,
June 11–13
, pp.
609
628
.
9.
Rimrott
,
F. P. J.
,
1970
, “
Querschnittsverformung bei Torsion Offener Profile
,”
ZAMM-J. Appl. Math. Mech./Z. für Angew. Math. Mech.
,
50
(
12
), pp.
775
778
.
10.
Calladine
,
C. R.
, and
Seffen
,
K. A.
,
2020
, “
Folding the Carpenter’s Tape: Boundary Layer Effects
,”
ASME J. Appl. Mech.
,
87
(
1
), p.
011009
.
11.
Martin
,
M.
,
Bourgeois
,
S.
,
Cochelin
,
B.
, and
Guinot
,
F.
,
2020
, “
Planar Folding of Shallow Tape-Springs: The Rod Model With Flexible Cross-Section Revisited as a Regularized Ericksen Bar Model
,”
Int. J. Solids Struct.
,
188–189
, pp.
189
209
.
12.
Chater
,
E.
, and
Hutchinson
,
J. W.
,
1984
, “
On the Propagation of Bulges and Buckles
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
269
277
.
13.
Lestringant
,
C.
, and
Audoly
,
B.
,
2018
, “
A Diffuse Interface Model for the Analysis of Propagating Bulges in Cylindrical Balloons
,”
Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci.
,
474
(
2218
), p.
20180333
.
14.
Calladine
,
C. R.
,
1988
, “
The Theory of Thin Shell Structures 1888–1988
,”
Proc. Inst. Mech. Eng. Part A: Power Process Eng.
,
202
(
3
), pp.
141
149
.
15.
Guinot
,
F.
,
Bourgeois
,
S.
,
Cochelin
,
B.
, and
Blanchard
,
L.
,
2012
, “
A Planar Rod Model With Flexible Thin-Walled Cross-Sections. Application to the Folding of Tape-Springs
,”
Int. J. Solids Struct.
,
49
(
1
), pp.
73
86
.
16.
Picault
,
E.
,
Marone-Hitz
,
P.
,
Bourgeois
,
S.
,
Cochelin
,
B.
, and
Guinot
,
F.
,
2014
, “
A Planar Rod Model With Flexible Cross-Section for the Folding and the Dynamic Deployment of Tape-Springs: Improvements and Comparisons With Experiments
,”
Int. J. Solids Struct.
,
51
(
18
), pp.
3226
3238
.
17.
Wuest
,
W.
,
1954
, “
Einige Anwendungen der Theorie der Zylinderschale
,”
ZAMM-J. Appl. Math. Mech./Z. für Angew. Math. Mech.
,
34
(
12
), pp.
444
454
.
18.
Mansfield
,
E. H.
,
1973
, “
Large-Deflexion Torsion and Flexure of Initially Curved Strips
,”
Proc. R. Soc. Lond. Ser. A
,
334
(
1598
), pp.
279
298
.
19.
Seffen
,
K. A.
,
2000
, “
On the Behaviour of Folded Tape-Springs
,”
ASME J. Appl. Mech.
,
68
(
3
), pp.
369
375
.
20.
Wang
,
B.
,
Seffen
,
K. A.
, and
Guest
,
S. D.
,
2019
, “Folding of Bistable Composite Tape-Springs,” CUED/D-STRUCT/TR.252.
21.
Smith
,
M.
,
2009
, ABAQUS/Standard User's Manual, Version 6.9,
Dassault Systèmes Simulia Corp
,
Providence, RI
.
You do not currently have access to this content.