Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

A modified incremental harmonic balance (IHB) method is used to determine periodic solutions of wave propagation in discrete, strongly nonlinear, periodic structures, and solutions are found to be in a two-dimensional hyperplane. A novel method based on the Hill’s method is developed to analyze stability and bifurcations of periodic solutions. A simplified model of wave propagation in a strongly nonlinear monatomic chain is examined in detail. The study reveals the amplitude-dependent property of nonlinear wave propagation in the structure and relationships among the frequency, the amplitude, the propagation constant, and the nonlinear stiffness. Numerous bifurcations are identified for the strongly nonlinear chain. Attenuation zones for wave propagation that are determined using an analysis of results from the modified IHB method and directly using the modified IHB method are in excellent agreement. Two frequency formulae for weakly and strongly nonlinear monatomic chains are obtained by a fitting method for results from the modified IHB method, and the one for a weakly nonlinear monatomic chain is consistent with the result from a perturbation method in the literature.

References

1.
Newton
,
I.
,
1686
,
Principia–book II, imprimatur S
,
Pepys, Reg. Soc. Præses
,
London
.
2.
Wang
,
K.
,
Liu
,
Y.
, and
Yang
,
Q. S.
,
2015
, “
Tuning of Band Structures in Porous Phononic Crystals by Grading Design of Cells
,”
Ultrasonics
,
61
, pp.
25
32
.
3.
Zhu
,
H. F.
, and
Semperlotti
,
F.
,
2013
, “
Metamaterial Based Embedded Acoustic Filters for Structural Applications
,”
AIP Adv.
,
3
(
9
), p.
092121
.
4.
Zhang
,
P.
, and
To
,
A. C.
,
2013
, “
Broadband Wave Filtering of Bioinspired Hierarchical Phononic Crystal
,”
Appl. Phys. Lett.
,
102
(
12
), p.
121910
.
5.
Kafesaki
,
M.
,
Sigalas
,
M. M.
, and
García
,
N.
,
2000
, “
Frequency Modulation in the Transmittivity of Wave Guides in Elastic-Wave Band-Gap Materials
,”
Phys. Rev. Lett.
,
85
(
19
), pp.
4044
4047
.
6.
Khelif
,
A.
,
Djafari-Rouhani
,
B.
,
Vasseur
,
J.
,
Deymier
,
P. A.
,
Lambin
,
P.
, and
Dobrzyński
,
L.
,
2002
, “
Transmittivity Through Straight and Stublike Waveguides in a Two-Dimensional Phononic Crystal
,”
Phys. Rev. B
,
65
(
17
), p.
174308
.
7.
Chen
,
J. J.
,
Zhang
,
H. B.
, and
Han
,
X.
,
2012
, “
Asymmetric Lamb Wave Propagation in Graded Grating Phononic Crystal Slabs
,”
2012 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA)
,
Shanghai, China
,
Nov. 23–25
, pp.
399
401
.
8.
Huang
,
C. Y.
,
Sun
,
J. H.
, and
Wu
,
T. T.
,
2010
, “
A Two-pPort Zno/Silicon Lamb Wave Resonator Using Phononic Crystals
,”
Appl. Phys. Lett.
,
97
(
3
), p.
031913
.
9.
Graff
,
K. F.
,
2012
,
Wave Motion in Elastic Solids
,
Dover Publications
,
New York
.
10.
Li
,
X.-F.
,
Ni
,
X.
,
Feng
,
L.
,
Lu
,
M.-H.
,
He
,
C.
, and
Chen
,
Y.-F.
,
2011
, “
Tunable Unidirectional Sound Propagation Through a Sonic-Crystal-Based Acoustic Diode
,”
Phys. Rev. Lett.
,
106
(
8
), p.
084301
.
11.
Lazarov
,
B. S.
, and
Jensen
,
J. S.
,
2007
, “
Low-Frequency Band Gaps in Chains With Attached Non-linear Oscillators
,”
Int. J. Non-linear Mech.
,
42
(
10
), pp.
1186
1193
.
12.
Narisetti
,
R. K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2010
, “
A Perturbation Approach for Predicting Wave Propagation in One-Dimensional Nonlinear Periodic Structures
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031001
.
13.
Xu
,
H.
,
Jiang
,
L.
,
Clerk
,
A.
, and
Harris
,
J.
,
2019
, “
Nonreciprocal Control and Cooling of Phonon Modes in an Optomechanical System
,”
Nature
,
568
(
7750
), pp.
65
69
.
14.
Devaux
,
T.
,
Tournat
,
V.
,
Richoux
,
O.
, and
Pagneux
,
V.
,
2015
, “
Asymmetric Acoustic Propagation of Wave Packets Via the Self-demodulation Effect
,”
Phys. Rev. Lett.
,
115
(
23
), p.
234301
.
15.
Boechler
,
N.
,
Theocharis
,
G.
, and
Daraio
,
C.
,
2011
, “
Bifurcation-Based Acoustic Switching and Rectification
,”
Nat. Mater.
,
10
(
9
), pp.
665
668
.
16.
Librandi
,
G.
,
Tubaldi
,
E.
, and
Bertoldi
,
K.
,
2021
, “
Programming Nonreciprocity and Reversibility in Multistable Mechanical Metamaterials
,”
Nat. Commun.
,
12
(
1
), p.
3454
.
17.
Brandenbourger
,
M.
,
Locsin
,
X.
,
Lerner
,
E.
, and
Coulais
,
C.
,
2019
, “
Non-reciprocal Robotic Metamaterials
,”
Nat. Commun.
,
10
(
1
), p.
4608
.
18.
Wang
,
Y.
,
Yousefzadeh
,
B.
,
Chen
,
H.
,
Nassar
,
H.
,
Huang
,
G.
, and
Daraio
,
C.
,
2018
, “
Observation of Nonreciprocal Wave Propagation in a Dynamic Phononic Lattice
,”
Phys. Rev. Lett.
,
121
(
19
), p.
194301
.
19.
Gil
,
I.
,
Martın
,
F.
,
Rottenberg
,
X.
, and
De Raedt
,
W.
,
2007
, “
Tunable Stop-Band Filter at Q-Band Based on RF-MEMS Metamaterials
,”
Electron. Lett.
,
43
(
21
), pp.
1153
1154
.
20.
Manimala
,
J. M.
, and
Sun
,
C.
,
2016
, “
Numerical Investigation of Amplitude-Dependent Dynamic Response in Acoustic Metamaterials With Nonlinear Oscillators
,”
J. Acoust. Soc. Am.
,
139
(
6
), pp.
3365
3372
.
21.
Mashinskii
,
E.
,
2007
, “
Amplitude-Dependent Effects of Longitudinal Seismic Wave Propagation in the Interhole Space
,”
Izvestiya Phys. Solid Earth
,
43
(
8
), pp.
683
690
.
22.
Vakakis
,
A. F.
, and
King
,
M. E.
,
1995
, “
Nonlinear Wave Transmission in a Monocoupled Elastic Periodic System
,”
J. Acoust. Soc. Am.
,
98
(
3
), pp.
1534
1546
.
23.
Manktelow
,
K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2013
, “
Comparison of Asymptotic and Transfer Matrix Approaches for Evaluating Intensity-Dependent Dispersion in Nonlinear Photonic and Phononic Crystals
,”
Wave Motion
,
50
(
3
), pp.
494
508
.
24.
Bethune
,
D. S.
,
1991
, “
Optical Harmonic Generation and Mixing in Multilayer Media: Extension of Optical Transfer Matrix Approach to Include Anisotropic Materials
,”
J. Opt. Soc. Am. B
,
8
(
2
), pp.
367
373
.
25.
Autrusson
,
T. B.
,
Sabra
,
K. G.
, and
Leamy
,
M. J.
,
2012
, “
Reflection of Compressional and Rayleigh Waves on the Edges of an Elastic Plate With Quadratic Nonlinearity.
,”
J. Acoust. Soc. Am.
,
131
(
3
), pp.
1928
1937
.
26.
Fronk
,
M.
,
Fang
,
L.
,
Packo
,
P.
, and
Leamy
,
M. J.
,
2023
, “
Elastic Wave Propagation in Weakly Nonlinear Media and Metamaterials: A Review of Recent Developments
,”
Nonlinear Dyn.
,
111
(
12
), p.
10709
.
27.
Fronk
,
M. D.
, and
Leamy
,
M. J.
,
2019
, “
Direction-Dependent Invariant Waveforms and Stability in Two-Dimensional, Weakly Nonlinear Lattices
,”
J. Sound Vib.
,
447
, pp.
137
154
.
28.
Narisetti
,
R. K.
,
Ruzzene
,
M.
, and
Leamy
,
M. J.
,
2011
, “
A Perturbation Approach for Analyzing Dispersion and Group Velocities in Two-Dimensional Nonlinear Periodic Lattices
,”
ASME J. Vib. Acoust.
,
133
(
6
), p.
061020
.
29.
Wang
,
Y. Z.
, and
Wang
,
Y. S.
,
2018
, “
Active Control of Elastic Wave Propagation in Nonlinear Phononic Crystals Consisting of Diatomic Lattice Chain
,”
Wave Motion
,
78
, pp.
1
8
.
30.
Wang
,
X. F.
,
Zhu
,
W. D.
, and
Liu
,
M.
,
2020
, “
SteadyState Periodic Solutions of the Nonlinear Wave Propagation Problem of a One-Dimensional Lattice Using a New Methodology With an Incremental Harmonic Balance Method That Handles Time Delays
,”
Nonlinear Dyn.
,
100
(
2
), pp.
1457
1467
.
31.
Manktelow
,
K. L.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2011
, “
Multiple Scales Analysis of Wave–Wave Interactions in a Cubically Nonlinear Monoatomic Chain
,”
Nonlinear Dyn.
,
63
(
1–2
), pp.
193
203
.
32.
Fronk
,
M. D.
, and
Leamy
,
M. J.
,
2017
, “
Higher-Order Dispersion, Stability, and Waveform Invariance in Nonlinear Monoatomic and Diatomic Systems
,”
ASME J. Vib. Acoust.
,
139
(
5
), p.
051003
.
33.
Jiao
,
W. J.
, and
Gonella
,
S.
,
2021
, “
Wavenumber-Space Band Clipping in Nonlinear Periodic Structures
,”
Proc. R. Soc. A
,
477
(
2251
), p.
20210052
.
34.
Zhou
,
W.
,
Li
,
X.
,
Wang
,
Y.
,
Chen
,
W.
, and
Huang
,
G.
,
2018
, “
Spectro-spatial Analysis of Wave Packet Propagation in Nonlinear Acoustic Metamaterials
,”
J. Sound Vib.
,
413
, pp.
250
269
.
35.
Chakraborty
,
G.
, and
Mallik
,
A.
,
2001
, “
Dynamics of a Weakly Non-linear Periodic Chain
,”
Int. J. Non-Linear Mech.
,
36
(
2
), pp.
375
389
.
36.
Lau
,
S. L.
, and
Cheung
,
Y. K.
,
1981
, “
Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic Systems
,”
ASME J. Appl. Mech.
,
48
(
4
), pp.
959
964
.
37.
Cheung
,
Y. K.
,
Chen
,
S. H.
, and
Lau
,
S. L.
,
1990
, “
Application of the Incremental Harmonic Balance Method to Cubic Non-linearity Systems
,”
J. Sound Vib.
,
140
(
2
), pp.
273
286
.
38.
Lau
,
S. L.
,
Cheung
,
Y. K.
, and
Wu
,
S. Y.
,
1982
, “
Variable Parameter Incrementation Method for Dynamic Instability of Linear and Nonlinear Elastic Systems
,”
ASME J. Appl. Mech.
,
49
(
4
), pp.
849
853
.
39.
Xu
,
G. Y.
, and
Zhu
,
W. D.
,
2010
, “
Nonlinear and Time-Varying Dynamics of High-Dimensional Models of a Translating Beam With a Stationary Load Subsystem
,”
ASME J. Vib. Acoust.
,
132
(
6
), p.
061012
.
40.
Wang
,
X. F.
, and
Zhu
,
W. D.
,
2015
, “
A Modified Incremental Harmonic Balance Method Based on the Fast Fourier Transform and Broyden’s Method
,”
Nonlinear Dyn.
,
81
(
1–2
), pp.
981
989
.
41.
Huang
,
J. L.
, and
Zhu
,
W. D.
,
2017
, “
A New Incremental Harmonic Balance Method With Two Time Scales for Quasi-periodic Motions of an Axially Moving Beam With Internal Resonance Under Single-Tone External Excitation
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
021010
.
42.
Ju
,
R.
,
Fan
,
W.
, and
Zhu
,
W. D.
,
2020
, “
An Efficient Galerkin Averaging-Incremental Harmonic Balance Method Based on the Fast Fourier Transform and Tensor Contraction
,”
ASME J. Vib. Acoust.
,
142
(
6
), p.
061011
.
43.
Narisetti
,
R. K.
,
Ruzzene
,
M.
, and
Leamy
,
M. J.
,
2012
, “
Study of Wave Propagation in Strongly Nonlinear Periodic Lattices Using a Harmonic Balance Approach
,”
Wave Motion
,
49
(
2
), pp.
394
410
.
44.
Wei
,
L. S.
,
Wang
,
Y. Z.
, and
Wang
,
Y. S.
,
2020
, “
Nonreciprocal Transmission of Nonlinear Elastic Wave Metamaterials by Incremental Harmonic Balance Method
,”
Int. J. Mech. Sci.
,
173
, p.
105433
.
45.
Song
,
M. T.
, and
Zhu
,
W. D.
,
2021
, “
Elastic Wave Propagation in Strongly Nonlinear Lattices and Its Active Control
,”
ASME J. Appl. Mech.
,
88
(
7
), p.
071003
.
You do not currently have access to this content.