Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Invasive blood pressure (IBP) is a fundamental part of basic cardiovascular monitoring. Conventional piezoresistive pressure sensors are limited in usage due to the high cost associated with equipment and intricate fabrication processes. Meanwhile, low-cost strain gauge pressure sensors have poor performance in the gauge factor (GF) and temperature insensitivity. Here, we report a mechanical structure design for diaphragm pressure sensors (DPSs) by introducing a compensation grid to overcome the aforementioned challenges. A simplified model is established to analyze the mechanical deformation and obtain the optimal design parameters of the diaphragm pressure sensor (DPS). By rationally arranging the placement of sensitive grids to eliminate the discrepancy of relative resistance changes within four arms of the Wheatstone full-bridge circuit, the appropriate GF and high-temperature insensitivity are simultaneously achieved. The blood pressure sensor with the DPS is then fabricated and characterized experimentally, which demonstrates an appropriate GF (ΔU/U0)/P=3.56×105kPa1 and low-temperature coefficient of voltage (ΔU/U0)/ΔT=3.4×107C1. The developed mechanical structure design offers valuable insights for other resistive pressure sensors to improve the GF and temperature insensitivity.

References

1.
Spence
,
J.
,
LeManach
,
Y.
,
Chan
,
M. T. V.
,
Wang
,
C. Y.
,
Sigamani
,
A.
,
Xavier
,
D.
,
Pearse
,
R.
, et al
,
2019
, “
Association Between Complications and Death Within 30 Days After Noncardiac Surgery
,”
CMAJ.
,
191
(
30
), pp.
E830
E837
.
2.
Salmasi
,
V.
,
Maheshwari
,
K.
,
Dongsheng
,
Y.
,
Mascha
,
E. J.
,
Singh
,
A.
,
Sessler
,
D. I.
, and
Kurz
,
A.
,
2017
, “
Relationship Between Intraoperative Hypotension, Defined by Either Reduction From Baseline or Absolute Thresholds, and Acute Kidney and Myocardial Injury After Noncardiac Surgery: A Retrospective Cohort Analysis
,”
Anesthesiology
,
126
(
1
), pp.
47
65
.
3.
Stapelfeldt
,
W. H.
,
Yuan
,
H.
,
Dryden
,
J. K.
,
Strehl
,
K. E.
,
Cywinski
,
J. B.
,
Ehrenfeld
,
J. M.
, and
Bromley
,
P.
,
2017
, “
The SLUScore: A Novel Method for Detecting Hazardous Hypotension in Adult Patients Undergoing Noncardiac Surgical Procedures
,”
Anesth. Analg.
,
124
(
4
), pp.
1135
1152
.
4.
Walsh
,
M.
,
Devereaux
,
P. J.
,
Garg
,
A. X.
,
Kurz
,
A.
,
Turan
,
A.
,
Rodseth
,
R. N.
,
Cywinski
,
J.
,
Thabane
,
L.
, and
Sessler
,
D. I.
,
2013
, “
Relationship Between Intraoperative Mean Arterial Pressure and Clinical Outcomes After Noncardiac Surgery: Toward an Empirical Definition of Hypotension
,”
Anesthesiology
,
119
(
3
), pp.
507
515
.
5.
Saugel
,
B.
, and
Sessler
,
D. I.
,
2021
, “
Perioperative Blood Pressure Management
,”
Anesthesiology
,
134
(
2
), pp.
250
261
.
6.
Meidert
,
A. S.
,
Briegel
,
J.
, and
Saugel
,
B.
,
2019
, “
Principles and Pitfalls of Arterial Blood Pressure Measurement
,”
Anaesthesist
,
68
(
9
), pp.
637
650
.
7.
Lam
,
S.
,
Liu
,
H.
,
Jian
,
Z.
,
Settels
,
J.
, and
Bohringer
,
C.
,
2021
, “
Intraoperative Invasive Blood Pressure Monitoring and the Potential Pitfalls of Invasively Measured Systolic Blood Pressure
,”
Cureus.
,
13
(
8
), pp.
22
30
.
8.
Wax
,
D. B.
,
Lin
,
H. M.
, and
Leibowitz
,
A. B.
,
2011
, “
Invasive and Concomitant Noninvasive Intraoperative Blood Pressure Monitoring: Observed Differences in Measurements and Associated Therapeutic Interventions
,”
Anesthesiology
,
115
(
5
), pp.
973
978
.
9.
Kaufmann
,
T.
,
Cox
,
E. G. M.
,
Wiersema
,
R.
,
Hiemstra
,
B.
,
Eck
,
R. J.
,
Koster
,
G.
,
Scheeren
,
T. W. L.
,
Keus
,
F.
,
Saugel
,
B.
, and
van der Horst
,
I. C. C.
,
2020
, “
Non-Invasive Oscillometric Versus Invasive Arterial Blood Pressure Measurements in Critically Ill Patients: A Post Hoc Analysis of a Prospective Observational Study
,”
J. Crit. Care
,
57
(
6
), pp.
118
123
.
10.
Meng
,
L.
,
Yu
,
W.
,
Wang
,
T.
,
Zhang
,
L.
,
Heerdt
,
P. M.
, and
Gelb
,
A. W.
,
2018
, “
Blood Pressure Targets in Perioperative Care Provisional Considerations Based on a Comprehensive Literature Review
,”
Hypertension
,
72
(
4
), pp.
806
817
.
11.
McEvoy
,
M. D.
,
Gupta
,
R.
,
Koepke
,
E. J.
,
Feldheiser
,
A.
,
Michard
,
F.
,
Levett
,
D.
,
Thacker
,
J. K. M.
, et al
,
2019
, “
Perioperative Quality Initiative Consensus Statement on Postoperative Blood Pressure, Risk and Outcomes for Elective Surgery
,”
Br. J. Anaesth.
,
122
(
5
), pp.
575
586
.
12.
Bistué
,
G.
,
Elizalde
,
J. G.
,
García-Alonso
,
I.
,
Olaizola
,
S.
,
Castaño
,
E.
,
Gracia
,
F. J.
, and
García-Alonso
,
A.
,
1997
, “
A Micromachined Pressure Sensor for Biomedical Applications
,”
J. Micromech. Microeng.
,
7
(
3
), pp.
244
246
.
13.
Shaw
,
A. J.
,
Davis
,
B. A.
,
Collins
,
M. J.
, and
Carney
,
L. G.
,
2009
, “
A Technique to Measure Eyelid Pressure Using Piezoresistive Sensors
,”
IEEE Trans. Biomed. Eng.
,
56
(
10
), pp.
2512
2517
.
14.
Marco
,
S.
,
Samitier
,
J.
,
Ruiz
,
O.
,
Morante
,
J. R.
, and
Esteve
,
J.
,
1996
, “
High-Performance Piezoresistive Pressure Sensors for Biomedical Applications Using Very Thin Structured Membranes
,”
Meas. Sci. Technol.
,
7
(
9
), pp.
1195
1203
.
15.
Nayak
,
M. M.
,
Gunasekaran
,
N.
,
Muthunayagam
,
A. E.
,
Rajanna
,
K.
, and
Mohan
,
S.
,
1993
, “
Diaphragm-Type Sputtered Platinum Thin Film Strain Gauge Pressure Transducer
,”
Meas. Sci. Technol.
,
4
(
12
), pp.
1319
1322
.
16.
Rajanna
,
K.
,
Mohan
,
S.
,
Nayak
,
M. M.
,
Gunasekaran
,
N.
, and
Muthunayagam
,
A. E.
,
1993
, “
Pressure Transducer With Au-Ni Thin-Film Strain Gauges
,”
IEEE Trans. Electron Devices
,
40
(
3
), pp.
521
524
.
17.
Zhang
,
J.
,
Liu
,
W.
,
Gao
,
L.
,
Zhang
,
Y.
, and
Tang
,
W.
,
2018
, “
Design, Analysis and Experiment of a Tactile Force Sensor for Underwater Dexterous Hand Intelligent Grasping
,”
Sensors (Switzerland)
,
18
(
8
), p.
2427
.
18.
Wang
,
J.
, and
Li
,
X.
,
2014
, “
A Dual-Unit Pressure Sensor for On-Chip Self-Compensation of Zero-Point Temperature Drift
,”
J. Micromech. Microeng.
,
24
(
8
), p.
085010
.
19.
Meng
,
Q.
,
Lu
,
Y.
,
Wang
,
J.
,
Chen
,
D.
,
Chen
,
J.
, and
Xie
,
B.
,
2021
, “
A Piezoresistive Pressure Microsensor Based on Simplified Fabrication Processes
,”
Proceedings 16th Annual IEEE International Conference Nano/Micro Engineered and Molecular System NEMS 2021
,
Xiamen, China
,
Apr. 25–29
, pp.
1465
1469
.
20.
Zhao
,
Y.
,
Liu
,
Y.
,
Li
,
Y.
, and
Hao
,
Q.
,
2020
, “
Development and Application of Resistance Strain Force Sensors
,”
Sensors (Switzerland)
,
20
(
20
), pp.
1
18
.
21.
Beker
,
L.
,
Matsuhisa
,
N.
,
You
,
I.
,
Ruth
,
S. R. A.
,
Niu
,
S.
,
Foudeh
,
A.
,
Tok
,
J. B. H.
,
Chen
,
X.
, and
Bao
,
Z.
,
2020
, “
A Bioinspired Stretchable Membrane-Based Compliance Sensor
,”
Proc. Natl. Acad. Sci. USA
,
117
(
21
), pp.
11314
11320
.
22.
Liang
,
Z.
,
Cheng
,
J.
,
Zhao
,
Q.
,
Zhao
,
X.
,
Han
,
Z.
,
Chen
,
Y.
,
Ma
,
Y.
, and
Feng
,
X.
,
2019
, “
High-Performance Flexible Tactile Sensor Enabling Intelligent Haptic Perception for a Soft Prosthetic Hand
,”
Adv. Mater. Technol.
,
4
(
8
), pp.
1
9
.
23.
Schomburg
,
W. K.
,
Rummler
,
Z.
,
Shao
,
P.
,
Wulff
,
K.
, and
Xie
,
L.
,
2004
, “
The Design of Metal Strain Gauges on Diaphragms
,”
J. Micromech. Microeng.
,
14
(
7
), pp.
1101
1108
.
24.
Hao
,
X.
,
Jiang
,
Y.
,
Takao
,
H.
,
Maenaka
,
K.
, and
Higuchi
,
K.
,
2012
, “
An Annular Mechanical Temperature Compensation Structure for Gas-Sealed Capacitive Pressure Sensor
,”
Sensors (Switzerland)
,
12
(
6
), pp.
8026
8038
.
25.
Timoshenko
,
S.
,
1959
,
Theory of Plates and Shells
,
McGraw-Hill Book Co
,
New York
.
26.
Kollias
,
A.
,
Ntineri
,
A.
,
Kyriakoulis
,
K. G.
,
Stambolliu
,
E.
, and
Stergiou
,
G. S.
,
2018
, “
Validation of the iHealth Ambulatory Blood Pressure Monitor in Adults According to the American National Standards Institute/Association for the Advancement of Medical Instrumentation/International Organization for Standardization Standard
,”
Blood Press. Monit.
,
23
(
2
), pp.
115
116
.
27.
Manuvinakurake
,
M.
,
Gandhi
,
U.
,
Umapathy
,
M.
, and
Nayak
,
M. M.
,
2019
, “
Bossed Diaphragm Coupled Fixed Guided Beam Structure for MEMS Based Piezoresistive Pressure Sensor
,”
Sens. Rev.
,
39
(
4
), pp.
586
597
.
28.
Song
,
P.
,
Si
,
C.
,
Zhang
,
M.
,
Zhao
,
Y.
,
He
,
Y.
,
Liu
,
W.
, and
Wang
,
X.
,
2020
, “
A Novel Piezoresistive MEMS Pressure Sensors Based on Temporary Bonding Technology
,”
Sensors (Switzerland)
,
20
(
2
), pp.
1
10
.
29.
Liu
,
Y.
,
Wang
,
H.
,
Zhao
,
W.
,
Qin
,
H.
, and
Fang
,
X.
,
2016
, “
Thermal-Performance Instability in Piezoresistive Sensors: Inducement and Improvement
,”
Sensors (Switzerland)
,
16
(
12
), pp.
1
23
.
30.
El Gibari
,
M.
,
Le Bleis
,
C.
,
Lirzin
,
G.
,
Lauzier
,
B.
,
Ginestar
,
S.
,
Tissier
,
J.
,
Latrach
,
M.
,
Gautier
,
C.
, and
Li
,
H.
,
2017
, “
Thermal Drift Compensation of Piezoresistive Implantable Blood Pressure Sensors With Low Cost Analog Solutions
,”
Proceedings International Conference on MicroelectronICS ICM, 2017-DECEM(ICM)
,
Beirut, Lebanon
,
Dec. 10–13
, pp.
1
4
.
31.
Yao
,
Z.
,
Liang
,
T.
,
Jia
,
P.
,
Hong
,
Y.
,
Qi
,
L.
,
Lei
,
C.
,
Zhang
,
B.
, and
Xiong
,
J.
,
2016
, “
A High-Temperature Piezoresistive Pressure Sensor With an Integrated Signal-Conditioning Circuit
,”
Sensors (Switzerland)
,
16
(
6
), p.
913
.
32.
Lawes
,
R. A.
,
2007
, “
Manufacturing Costs for Microsystems/MEMS Using High Aspect Ratio Microfabrication Techniques
,”
Microsyst. Technol.
,
13
(
1
), pp.
85
95
.
33.
Pagliano
,
S.
,
Marschner
,
D. E.
,
Maillard
,
D.
,
Ehrmann
,
N.
,
Stemme
,
G.
,
Braun
,
S.
,
Villanueva
,
L. G.
, and
Niklaus
,
F.
,
2022
, “
Micro 3D Printing of a Functional MEMS Accelerometer
,”
Microsystems Nanoeng.
,
8
(
1
), p.
105
.
34.
Maeda
,
R.
,
Takahashi
,
M.
, and
Sasaki
,
S.
,
2007
, “
Commercialization of MEMS and Nano Manufacturing
,”
Polytronic 2007—6th International Conference on Polymers and Adhesives in Microelectronics and Photonics
,
Tokyo, Japan
,
Jan. 15–18
, pp.
20
23
.
35.
Timoshenko
,
S.
,
1931
,
Strength of Materials
,
Krieger Pub Co
,
Malabar, FL
.
36.
Oller
,
S.
,
Oller Aramayo
,
S. A.
,
Nallim
,
L. G.
, and
Martinez
,
X.
,
2018
,
Composite Materials
,
Springer
,
London, UK
.
37.
O’Malley
,
J.
,
2013
,
Theory and Problem of Basic Circuit Analysis
,
McGraw Hill Book Co
,
New York
.
38.
Kälvesten
,
J. E.
,
Smith
,
L.
,
Tenerz
,
L.
, and
Stemme
,
G.
,
1998
, “
First Surface Micromachined Pressure Sensor for Cardiovascular Pressure Measurements
,”
Proceeding IEEE Micro Electro Mechanical and Systems, (c)
,
Heidelberg, Germany
,
Jan. 25–29
, pp.
574
579
.
39.
Melvås
,
P.
,
Kälvesten
,
E.
, and
Stemme
,
G.
,
2002
, “
A Temperature Compensated Dual Beam Pressure Sensor
,”
Sensors Actuators, A Phys.
,
100
(
1
), pp.
46
53
.
You do not currently have access to this content.