Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This paper presents the integration of a numerical structural model based on the redundancy matrix and experimental results of multi-layered randomized architected materials (MLRAM). It presents a combination of the relatively new field of architected materials with a load-independent performance indicator from theoretical structural mechanics. The redundancy matrix by itself provides a measure for structural assessment that is independent of a specific load case. Various layouts of the MLRAM samples and recorded testing allow the analysis of the redundancy distribution within the structure as it undergoes failure. An in-depth analysis of the tested MLRAM samples is provided, as they show a high degree of static indeterminacy and thus, multiple different load paths. A special focus lies on the change of the redundancy distribution as global progressive failure happens. Another focus is set on the investigation of the failure initiation, meaning that the redundancy distribution can help to identify critical elements. A simple introductory example shows the interdependence between the variation of the geometric location of nodes and the redundancy distribution. The study shows, that the distribution of static indeterminacy can be used as a measure to quantify vulnerability to failure and rank the individual element’s importance. Furthermore, progressive collapse is identified as a series of local effects in the highly statically indeterminate MLRAM samples, underlining the fact that the spatial distribution of static indeterminacy is of central importance for the assessment of structural safety.

References

1.
DIN EN 1991-1-7:2010-12
,
2010
, Eurocode_1: Einwirkungen auf Tragwerke_- Teil_1-7: Allgemeine Einwirkungen_ Außergewöhnliche Einwirkungen; Deutsche Fassung EN_1991-1-7:2006_+ AC:2010. Technical Report, Beuth Verlag GmbH.
2.
ASCE
,
2022
. Minimum Design Loads and Associated Criteria for Buildings and Other Structures: ASCE/SEI 7-22. American Society of Civil Engineers, Reston, VA.
3.
Pellegrino
,
S.
, and
Calladine
,
C.
,
1986
, “
Matrix Analysis of Statically and Kinematically Indeterminate Frameworks
,”
Int. J. Solids Struct.
,
22
(
4
), pp.
409
428
.
4.
Maxwell
,
J. C.
,
1864
, “
On the Calculation of the Equilibrium and Stiffness of Frames
,”
Lond. Edinb., Dub. Phil. Mag. J. Sci.
,
27
(
182
), pp.
294
299
.
5.
Calladine
,
C.
,
1978
, “
Buckminster Fuller’s “Tensegrity” Structures and Clerk Maxwell’s Rules for the Construction of Stiff Frames
,”
Int. J. Solids Struct.
,
14
(
2
), pp.
161
172
.
6.
Fowler
,
P.
, and
Guest
,
S.
,
2000
, “
A Symmetry Extension of Maxwell’s Rule for Rigidity of Frames
,”
Int. J. Solids Struct.
,
37
(
12
), pp.
1793
1804
.
7.
Linkwitz
,
K.
,
1961
, Fehlertheorie und Ausgleichung von Streckennetzen nach der Theorie Elastischer Systeme. No. Heft Nr. 46 in Dissertation, Universität Stuttgart, Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften, Reihe C: Dissertationen. Beck Verlag, München.
8.
Bahndorf
,
J.
,
1991
, “
Zur Systematisierung Der Seilnetzberechnung Und Zur Optimierung Von Seilnetzen
.,” Ph.D. thesis,
University of Stuttgart
,
Stuttgart, Germany
.
9.
Ströbel
,
D.
,
1995
, “
Die Anwendung Der Ausgleichungsrechnung Auf Elastomechanische Systeme
,” Dissertation,
Universität Stuttgart
,
Stuttgart, Germany
.
10.
von Scheven
,
M.
,
Ramm
,
E.
, and
Bischoff
,
M.
,
2021
, “
Quantification of the Redundancy Distribution in Truss and Beam Structures
,”
Int. J. Solids Struct.
,
213
, pp.
41
49
.
11.
Gade
,
J.
,
Tkachuk
,
A.
,
von Scheven
,
M.
, and
Bischoff
,
M.
,
2021
, “
A Continuum-Mechanical Theory of Redundancy in Elastostatic Structures
,”
Int. J. Solids Struct.
,
226–227
, p.
110977
.
12.
Kou
,
X.
,
Li
,
L.
,
Zhou
,
Y.
, and
Song
,
J.
,
2017
, “
Redundancy Component Matrix and Structural Robustness
,”
Int. J. Civil Environ. Eng.
,
11
(
8
), pp.
1155
1160
.
13.
Forster
,
D.
,
Kannenberg
,
F.
,
Scheven
,
M. V.
,
Menges
,
A.
, and
Bischoff
,
M.
,
2023
, “Design and Optimization of Beam and Truss Structures Using Alternative Performance Indicators Based on the Redundancy Matrix”. In
Advances in Architectural Geometry 2023
,
K.
Dörfler
,
J.
Knippers
,
A.
Menges
,
S.
Parascho
,
H.
Pottmann
, and
T.
Wortmann
, eds., De
Gruyter, September
, pp.
455
466
.
14.
Ströbel
,
D.
, and
Singer
,
P.
,
2008
, “Recent Developments in the Computational Modelling of Textile Membranes and Inflatable Structures”. In
Textile Composites and Inflatable Structures II
,
E.
Oñate
and
B.
Kröplin
, eds., Computational Methods in Applied Sciences.
Springer Netherlands
,
Dordrecht, The Netherlands
, pp.
253
266
.
15.
Geiger
,
F.
,
Gade
,
J.
,
von Scheven
,
M.
, and
Bischoff
,
M.
,
2020
, “Anwendung der Redundanzmatrix Bei Der Bewertung Adaptiver Strukturen”. In
Berichte der Fachtagung Baustatik - Baupraxis 14
,
M.
Bischoff
,
M.
von Scheven
, and
B.
Oesterle
, eds.
16.
Wagner
,
J. L.
,
Gade
,
J.
,
Heidingsfeld
,
M.
,
Geiger
,
F.
,
von Scheven
,
M.
,
Böhm
,
M.
,
Bischoff
,
M.
, and
Sawodny
,
O.
,
2018
, “
On Steady-State Disturbance Compensability for Actuator Placement in Adaptive Structures
,”
At - Automatisierungstechnik
,
66
(
8
), pp.
591
603
.
17.
Gil Pérez
,
M.
,
Mindermann
,
P.
,
Zechmeister
,
C.
,
Forster
,
D.
,
Guo
,
Y.
,
Hügle
,
S.
,
Kannenberg
,
F.
, et al.,
2023
, “
Data Processing, Analysis, and Evaluation Methods for Co-Design of Coreless Filament-Wound Building Systems
,”
J. Comput. Des. Eng.
,
10
(
4
), pp.
1460
1478
.
18.
Eriksson
,
A.
, and
Tibert
,
A. G.
,
2006
, “
Redundant and Force-Differentiated Systems in Engineering and Nature
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
41–43
), pp.
5437
5453
.
19.
Fields
,
A. J.
,
Nawathe
,
S.
,
Eswaran
,
S. K.
,
Jekir
,
M. G.
,
Adams
,
M. F.
,
Papadopoulos
,
P.
, and
Keaveny
,
T. M.
,
2012
, “
Vertebral Fragility and Structural Redundancy
,”
J. Bone Miner. Res.
,
27
(
10
), pp.
2152
2158
. http://dx.doi.org.10.1002/jbmr.1664
20.
Tibert
,
A. G.
,
2005
, “
Flexibility Evaluation of Prestressed Kinematically Indeterminate Frameworks
,”
18th Nordic Seminar on Computational Mechanics
,
Helsinki, Finland
,
Oct. 27–30
, pp.
165
168
.
21.
Zhou
,
J.-y.
,
Chen
,
W.-j.
,
Zhao
,
B.
,
Qiu
,
Z.-y.
, and
Dong
,
S.-l.
,
2015
, “
Distributed Indeterminacy Evaluation of Cable-Strut Structures: Formulations and Applications
,”
J. Zhejiang Univ. Sci. A
,
16
(
9
), pp.
737
748
.
22.
Kladovasilakis
,
N.
,
Tsongas
,
K.
,
Karalekas
,
D.
, and
Tzetzis
,
D.
,
2022
, “
Architected Materials for Additive Manufacturing: A Comprehensive Review
,”
Materials
,
15
(
17
), p.
5919
.
23.
Senhora
,
F. V.
,
Sanders
,
E. D.
, and
Paulino
,
G. H.
,
2022
, “
Optimally–Tailored Spinodal Architected Materials for Multiscale Design and Manufacturing
,”
Adv. Mater.
,
34
(
26
), p.
2109304
.
24.
Osanov
,
M.
, and
Guest
,
J. K.
,
2016
, “
Topology Optimization for Architected Materials Design
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
211
233
.
25.
Greer
,
J. R.
, and
Deshpande
,
V. S.
,
2019
, “
Three-Dimensional Architected Materials and Structures: Design, Fabrication, and Mechanical Behavior
,”
MRS Bull.
,
44
(
10
), pp.
750
757
.
26.
Andersen
,
M. N.
,
Wang
,
F.
, and
Sigmund
,
O.
,
2021
, “
On the Competition for Ultimately Stiff and Strong Architected Materials
,”
Mater. Des.
,
198
, p.
109356
.
27.
Kothari
,
K.
,
Hu
,
Y.
,
Gupta
,
S.
, and
Elbanna
,
A.
,
2018
, “
Mechanical Response of Two-Dimensional Polymer Networks: Role of Topology, Rate Dependence, and Damage Accumulation
,”
ASME J. Appl. Mech.
,
85
(
3
), p.
031008
.
28.
Ghareeb
,
A.
, and
Elbanna
,
A.
,
2020
, “
An Adaptive Quasicontinuum Approach for Modeling Fracture in Networked Materials: Application to Modeling of Polymer Networks
,”
J. Mech. Phys. Solids
,
137
, p.
103819
.
29.
Ghareeb
,
A.
, and
Elbanna
,
A.
,
2021
, “
Modeling Fracture in Rate-Dependent Polymer Networks: A Quasicontinuum Approach
,”
AMSE J. Appl. Mech.
,
88
(
11
), p.
111007
.
30.
Paul
,
S.
, and
Sychterz
,
A. C.
,
2024
, “
Multilayered Randomized Architected Material Under Tensile Loading for a Tensegrity Structure
,”
ASME J. Eng. Mech.
,
150
(
6
), p.
04024026
.
31.
Loh
,
W.-L.
,
1996
, “
On Latin Hypercube Sampling
,”
Ann. Stat.
,
24
(
5
), pp.
2058
2080
. http://www.jstor.org/stable/2242641
32.
Ellingwood
,
B. R.
, and
Dusenberry
,
D. O.
,
2005
, “
Building Design for Abnormal Loads and Progressive Collapse
,”
Comput.-Aid. Civil Infrastruct. Eng.
,
20
(
3
), pp.
194
205
.
33.
Hamburger
,
R.
,
2006
, “
Alternative Methods of Evaluating and Achieving Progressive Collapse Resistance
,”
Proceedings of North American Structural Steel Conference
,
San Antonio, TX
,
Feb. 8–11
,
AISC
, pp.
1
10
.
34.
Argyris
,
J.
,
1964
, “Recent Advances in Matrix Methods of Structural Analysis”. Vol. 4. Progress in Aeronautical Sciences, D. Küchemann and L. Sterne, eds. Pergamon Press.
35.
Argyris
,
J.
,
Kelsey
,
S.
, and
Kamel
,
H.
,
1964
, “Matrix Methods of Structural Analysis - A Precis of Recent Developments”.
AGARDograph 72
,
F.
de Veubeke
, ed.,
Pergamon Press
.
You do not currently have access to this content.