Abstract

Ceramic matrix composites (CMCs) reinforced by two-dimensional (2D) nanomaterials have shown extraordinary load-carrying capacities, even in the harsh environments required by emerging applications. Their exceptional mechanical performance, especially fracture toughness, primarily arises from their heterogeneous microstructures. The deliberate dispersion of 2D reinforcements enables toughening mechanisms that are extrinsic to the matrix and thus endows the composites with substantial resistance to catastrophic failure. However, the incomplete understanding of the fracture behavior of such nanocomposites, especially the complex energy dissipation process of the matrix/reinforcement interface, limits the development of stronger and tougher CMCs. To overcome these limitations, we investigate crack deflection and energy dissipation in nanocomposites using an extended cohesive shear-lag model. This new model accounts for interfacial debonding and friction, which critically control the toughening of nanocomposites. Our analysis provides mechanistic insights for optimizing the toughening effects of CMCs.

References

1.
Gao
,
H.
,
Ji
,
B.
,
Jäger
,
I. L.
,
Arzt
,
E.
, and
Fratzl
,
P.
,
2003
, “
Materials Become Insensitive to Flaws at Nanoscale: Lessons From Nature
,”
Proc. Natl. Acad. Sci. U.S.A.
,
100
(
10
), pp.
5597
5600
.
2.
Ren
,
J.
,
Zhang
,
Y.
,
Zhao
,
D.
,
Chen
,
Y.
,
Guan
,
S.
,
Liu
,
Y.
,
Liu
,
L.
, et al
,
2022
, “
Strong Yet Ductile Nanolamellar High-Entropy Alloys by Additive Manufacturing
,”
Nature
,
608
(
7921
), pp.
62
68
.
3.
Xiao
,
S.
,
Chen
,
C.
,
Xia
,
Q.
,
Liu
,
Y.
,
Yao
,
Y.
,
Chen
,
Q.
,
Hartsfield
,
M.
, et al
,
2021
, “
Lightweight, Strong, Moldable Wood Via Cell Wall Engineering as a Sustainable Structural Material
,”
Science
,
374
(
6566
), pp.
465
471
.
4.
Athanasiou
,
C. E.
,
Zhang
,
H.
,
Ramirez
,
C.
,
Xi
,
J.
,
Baba
,
T.
,
Wang
,
X.
,
Zhang
,
W.
,
Padture
,
N. P.
,
Szlufarska
,
I.
, and
Sheldon
,
B. W.
,
2020
, “
High Toughness Carbon-Nanotube-Reinforced Ceramics Via Ion-Beam Engineering of Interfaces
,”
Carbon
,
163
, pp.
169
177
.
5.
Athanasiou
,
C. E.
,
Jin
,
M. Y.
,
Ramirez
,
C.
,
Padture
,
N. P.
, and
Sheldon
,
B. W.
,
2020
, “
High-Toughness Inorganic Solid Electrolytes Via the Use of Reduced Graphene Oxide
,”
Matter
,
3
(
1
), pp.
212
229
.
6.
Padture
,
N. P.
,
2016
, “
Advanced Structural Ceramics in Aerospace Propulsion
,”
Nat. Mater.
,
15
(
8
), pp.
804
809
.
7.
Padture
,
N. P.
,
2019
, “
Environmental Degradation of High-Temperature Protective Coatings for Ceramic-Matrix Composites in Gas-Turbine Engines
,”
NPJ Mater. Degrad.
,
3
(
1
), pp.
1
6
.
8.
Kelly
,
A.
,
1970
, “
Interface Effects and the Work of Fracture of a Fibrous Composite
,”
Proc. R. Soc. Lond. A Math. Phys. Sci.
,
319
(
1536
), pp.
95
116
.
9.
Marshall
,
D. B.
, and
Evans
,
A. G.
,
1985
, “
Failure Mechanisms in Ceramic-Fiber/Ceramic-Matrix Composites
,”
J. Am. Ceram. Soc.
,
68
(
5
), pp.
225
231
.
10.
Huang
,
L. J.
,
Geng
,
L.
, and
Peng
,
H. X.
,
2015
, “
Microstructurally Inhomogeneous Composites: Is a Homogeneous Reinforcement Distribution Optimal?
,”
Prog. Mater. Sci.
,
71
, pp.
93
168
.
11.
González
,
C.
,
Vilatela
,
J. J.
,
Molina-Aldareguía
,
J. M.
,
Lopes
,
C. S.
, and
Lorca
,
J.
,
2017
, “
Structural Composites for Multifunctional Applications: Current Challenges and Future Trends
,”
Prog. Mater. Sci.
,
89
, pp.
194
251
.
12.
Ramirez
,
C.
,
Miranzo
,
P.
,
Belmonte
,
M.
,
Osendi
,
M. I.
,
Poza
,
P.
,
Vega-Diaz
,
S. M.
, and
Terrones
,
M.
,
2014
, “
Extraordinary Toughening Enhancement and Flexural Strength in Si3N4 Composites Using Graphene Sheets
,”
J. Eur. Ceram. Soc.
,
34
(
2
), pp.
161
169
.
13.
Walker
,
L. S.
,
Marotto
,
V. R.
,
Rafiee
,
M. A.
,
Koratkar
,
N.
, and
Corral
,
E. L.
,
2011
, “
Toughening in Graphene Ceramic Composites
,”
ACS Nano
,
5
(
4
), pp.
3182
3190
.
14.
Zhang
,
X.
,
Zhao
,
N.
, and
He
,
C.
,
2020
, “
The Superior Mechanical and Physical Properties of Nanocarbon Reinforced Bulk Composites Achieved by Architecture Design—A Review
,”
Prog. Mater. Sci.
,
113
, p.
100672
.
15.
Griffith
,
A. A.
,
1921
, “
The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. Lond. Ser. A: Contain. Pap. Math. Phys. Charact.
,
4
(
1
), pp.
9
14
.
16.
Irwin
,
G. R.
,
1957
, “
Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate
,”
ASME J. Appl. Mech.
,
24
(
3
), pp.
361
364
.
17.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
.
18.
Cottrell
,
A. H.
,
1965
, “
The Ultimate Mechanical Properties of Solids
,”
Metall. Achieve.
, pp.
259
272
.
19.
Cook
,
J.
, and
Gordon
,
J. E.
,
1964
, “
A Mechanism for the Control of Crack Propagation in All-Brittle Systems
,”
Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci.
,
282
(
1391
), pp.
508
520
.
20.
Lee
,
W.
,
Howard
,
S. J.
, and
Clegg
,
W. J.
,
1996
, “
Growth of Interface Defects and Its Effect on Crack Deflection and Toughening Criteria
,”
Acta Mater.
,
44
(
10
), pp.
3905
3922
.
21.
Tu
,
W.-C.
,
Lange
,
F. F.
, and
Evans
,
A. G.
,
1996
, “
Concept for a Damage-Tolerant Ceramic Composite With ‘Strong’ Interfaces
,”
J. Am. Ceram. Soc.
,
79
(
2
), pp.
417
424
.
22.
Ahn
,
B. K.
,
Curtin
,
W. A.
,
Parthasarathy
,
T. A.
, and
Dutton
,
R. E.
,
1998
, “
Criteria for Crack Deflection/Penetration Criteria for Fiber-Reinforced Ceramic Matrix Composites
,”
Compos. Sci. Technol.
,
58
(
11
), pp.
1775
1784
.
23.
Leguillon
,
D.
,
Lacroix
,
C.
, and
Martin
,
E.
,
2000
, “
Interface Debonding Ahead of a Primary Crack
,”
J. Mech. Phys. Solids
,
48
(
10
), pp.
2137
2161
.
24.
Roham
,
S.
,
Hardikar
,
K.
, and
Woytowitz
,
P.
,
2004
, “
Crack Penetration and Deflection at a Bimaterial Interface in a Four-Point Bend Test
,”
J. Mater. Res.
,
19
(
10
), pp.
3019
3027
.
25.
Lee
,
W.
,
Yoo
,
Y. H.
, and
Shin
,
H.
,
2004
, “
Reconsideration of Crack Deflection at Planar Interfaces in Layered Systems
,”
Compos. Sci. Technol.
,
64
(
15
), pp.
2415
2423
.
26.
Gupta
,
V.
,
Argon
,
A. S.
, and
Suo
,
Z.
,
1992
, “
Crack Deflection at an Interface Between Two Orthotopic Media
,”
ASME J. Appl. Mech.
,
59
(
2S
), pp.
S79
S87
.
27.
Parmigiani
,
J. P.
, and
Thouless
,
M. D.
,
2006
, “
The Roles of Toughness and Cohesive Strength on Crack Deflection at Interfaces
,”
J. Mech. Phys. Solids
,
54
(
2
), pp.
266
287
.
28.
He
,
M.-Y.
, and
Hutchinson
,
J. W.
,
1989
, “
Crack Deflection at an Interface Between Dissimilar Elastic Materials
,”
Int. J. Solids Struct.
,
25
(
9
), pp.
1053
1067
.
29.
He
,
M.
,
Bartlett
,
A.
,
Evans
,
A. G.
, and
Hutchinson
,
J. W.
,
1991
, “
Kinking of a Crack Out of an Interface: Role of In-Plane Stress
,”
J. Am. Ceram. Soc.
,
74
(
4
), pp.
767
771
.
30.
He
,
M.-Y.
,
Evans
,
A. G.
, and
Hutchinson
,
J. W.
,
1994
, “
Crack Deflection at an Interface Between Dissimilar Elastic Materials: Role of Residual Stresses
,”
Int. J. Solids Struct.
,
31
(
24
), pp.
3443
3455
.
31.
Paggi
,
M.
, and
Reinoso
,
J.
,
2017
, “
Revisiting the Problem of a Crack Impinging on an Interface: A Modeling Framework for the Interaction Between the Phase Field Approach for Brittle Fracture and the Interface Cohesive Zone Model
,”
Comput. Methods Appl. Mech. Eng.
,
321
, pp.
145
172
.
32.
He
,
M.-Y.
,
Hsueh
,
C. H.
, and
Becher
,
P. F.
,
2000
, “
Deflection Versus Penetration of a Wedge-Loaded Crack: Effects of Branch-Crack Length and Penetrated-Layer Width
,”
Compos. Part B: Eng.
,
31
(
4
), pp.
299
308
.
33.
Zhang
,
Z.
, and
Suo
,
Z.
,
2007
, “
Split Singularities and the Competition Between Crack Penetration and Debond at a Bimaterial Interface
,”
Int. J. Solids Struct.
,
44
(
13
), pp.
4559
4573
.
34.
Martin
,
E.
,
Leguillon
,
D.
, and
Lacroix
,
C.
,
2001
, “
A Revisited Criterion for Crack Deflection at an Interface in a Brittle Bimaterial
,”
Compos. Sci. Technol.
,
61
(
12
), pp.
1671
1679
.
35.
Kendall
,
K.
,
1975
, “
Transition Between Cohesive and Interfacial Failure in a Laminate
,”
Proc. R. Soc. Lond. A: Math. Phys. Sci.
,
344
(
1637
), pp.
287
302
.
36.
Thouless
,
M. D.
, and
Evans
,
A. G.
,
1988
, “
Effects of Pull-Out on the Mechanical Properties of Ceramic-Matrix Composites
,”
Acta Metall.
,
36
(
3
), pp.
517
522
.
37.
Ye
,
T.
,
Suo
,
Z.
, and
Evans
,
A. G.
,
1992
, “
Thin Film Cracking and the Roles of Substrate and Interface
,”
Int. J. Solids Struct.
,
29
(
21
), pp.
2639
2648
.
38.
Gupta
,
V.
,
Yuan
,
J.
, and
Martinez
,
D.
,
1993
, “
Calculation, Measurement, and Control of Interface Strength in Composites
,”
J. Am. Ceram. Soc.
,
76
(
2
), pp.
305
315
.
39.
Tullock
,
D. L.
,
Reimanis
,
I. E.
,
Graham
,
A. L.
, and
Petrovic
,
J. J.
,
1994
, “
Deflection and Penetration of Cracks at an Interface Between Two Dissimilar Materials
,”
Acta Metall. Mater.
,
42
(
9
), pp.
3245
3252
.
40.
Martínez
,
D.
, and
Gupta
,
V.
,
1994
, “
Energy Criterion for Crack Deflection at an Interface Between Two Orthotropic Media
,”
J. Mech. Phys. Solids
,
42
(
8
), pp.
1247
1271
.
41.
Curtin
,
W. A.
,
1991
, “
Theory of Mechanical Properties of Ceramic-Matrix Composites
,”
J. Am. Ceram. Soc.
,
74
(
11
), pp.
2837
2845
.
42.
Shao
,
Y.
,
Zhao
,
H. P.
,
Feng
,
X. Q.
, and
Gao
,
H.
,
2012
, “
Discontinuous Crack-Bridging Model for Fracture Toughness Analysis of Nacre
,”
J. Mech. Phys. Solids
,
60
(
8
), pp.
1400
1419
.
43.
Putra
,
I. S.
,
Budiman
,
B. A.
,
Sambegoro
,
P. L.
,
Santosa
,
S. P.
,
Mahyuddin
,
A. I.
,
Kishimoto
,
K.
, and
Inaba
,
K.
,
2020
, “
The Influence of Fiber Surface Profile and Roughness to Fiber–Matrix Interfacial Properties
,”
J. Compos. Mater.
,
54
(
11
), pp.
1441
1452
.
44.
Zhang
,
B.
,
Liu
,
X.
,
Guo
,
H.
,
Yang
,
K.
,
Gao
,
G.
,
Sheldon
,
B. W.
,
Gao
,
H.
, and
Lou
,
J.
,
2021
, “
Quantitative In-Situ Study of Strength-Governed Interfacial Failure Between h-BN and Polymer-Derived Ceramic
,”
Acta Mater.
,
210
, p.
116832
.
45.
Adawi
,
A.
,
Youssef
,
M. A.
, and
Meshaly
,
M.
,
2014
, “
Analytical Modeling of the Interface Between Lightly Roughened Hollowcore Slabs and Cast-In-Place Concrete Topping
,”
J. Struct. Eng.
,
141
(
4
), p.
04014119
.
46.
Adawi
,
A.
,
Youssef
,
M. A.
, and
Meshaly
,
M. E.
,
2015
, “
Experimental Investigation of the Composite Action Between Hollowcore Slabs With Machine-Cast Finish and Concrete Topping
,”
Eng. Struct.
,
91
, pp.
1
15
.
47.
Adawi
,
A.
,
Youssef
,
M. A.
, and
Meshaly
,
M. E.
,
2016
, “
Evaluating Interfacial Shear Stresses in Composite Hollowcore Slabs Using Analytical Solution
,”
Alexandria Eng. J.
,
55
(
3
), pp.
2647
2654
.
48.
Ida
,
Y.
,
1972
, “
Cohesive Force Across the Tip of a Longitudinal-Shear Crack and Griffith’s Specific Surface Energy
,”
J. Geophys. Res.
,
77
(
20
), pp.
3796
3805
.
49.
Ni
,
B.
,
Steinbach
,
D.
,
Yang
,
Z.
,
Lew
,
A.
,
Zhang
,
B.
,
Fang
,
Q.
,
Buehler
,
M. J.
, and
Lou
,
J.
,
2022
, “
Fracture at the Two-Dimensional Limit
,”
MRS Bull.
,
47
(
8
), pp.
848
862
.
50.
Zhang
,
P.
,
Ma
,
L.
,
Fan
,
F.
,
Zeng
,
Z.
,
Peng
,
C.
,
Loya
,
P. E.
,
Liu
,
Z.
, et al
,
2014
, “
Fracture Toughness of Graphene
,”
Nat. Commun.
,
5
(
1
), pp.
1
7
.
51.
Liu
,
Y.
,
Ramirez
,
C.
,
Zhang
,
L.
,
Wu
,
W.
, and
Padture
,
N. P.
,
2017
, “
In Situ Direct Observation of Toughening in Isotropic Nanocomposites of Alumina Ceramic and Multiwall Carbon Nanotubes
,”
Acta Mater.
,
127
, pp.
203
210
.
52.
Cotterell
,
B.
,
1966
, “
Notes on the Paths and Stability of Cracks
,”
Int. J. Fract. Mech.
,
2
(
3
), pp.
526
533
.
53.
Cotterell
,
B.
, and
Rice
,
J. R.
,
1980
, “
Slightly Curved or Kinked Cracks
,”
Int. J. Fract.
,
16
(
2
), pp.
155
169
.
You do not currently have access to this content.