Abstract

This work develops a continuum phase field model for predicting the damage initiation and crack propagation in multiple network elastomers. Previous researches have revealed that failure of multiple network elastomers involves microscopic damage initiation by the chain scission of filler network and macroscopic fracture by penetrating crack of matrix network. However, most existing models for multiple network elastomers only deal with its finite deformation and strain softening process, which are unable to capture the initiation and propagation of cracks. In this work, to bridge the microscopic damage and the macroscopic fracture of multiple network elastomers in the finite deformation model, we incorporate the phase field variable of crack surface density to model the crack propagation and the internal damage variable to model the chain scission. By forming a multi-field variational framework, the developed model can be used to simulate the macroscopic deformation and fracture of multiple network elastomers. Through a finite element implementation of the phase field model, previous experiment results obtained from uniaxial tension and unilateral fracture can be well predicted. Moreover, experimentally observed damage zone formed by sacrificing filler network to achieve toughening effect is also numerically illustrated in simulation, giving much clearer pictures for the contributions of different energy dissipation mechanisms.

References

1.
Argon
,
A. S.
,
2013
,
The Physics of Deformation and Fracture of Polymers
,
Cambridge University Press
,
New York
.
2.
Creton
,
C.
, and
Ciccotti
,
M.
,
2016
, “
Fracture and Adhesion of Soft Materials: A Review
,”
Rep. Prog. Phys.
,
79
(
4
), p.
046601
.
3.
Zhao
,
X.
,
2014
, “
Multi-scale Multi-mechanism Design of Tough Hydrogels: Building Dissipation Into Stretchy Networks
,”
Soft Matter
,
10
(
5
), pp.
672
687
.
4.
Gong
,
J. P.
,
2010
, “
Why Are Double Network Hydrogels So Tough
,”
Soft Matter
,
6
(
12
), p.
2583
.
5.
Fukao
,
K.
,
Nakajima
,
T.
,
Nonoyama
,
T.
,
Kurokawa
,
T.
,
Kawai
,
T.
, and
Gong
,
J. P.
,
2020
, “
Effect of Relative Strength of Two Networks on the Internal Fracture Process of Double Network Hydrogels as Revealed by In Situ Small-Angle X-Ray Scattering
,”
Macromolecules
,
53
(
4
), pp.
1154
1163
.
6.
Matsuda
,
T.
,
Kawakami
,
R.
,
Nakajima
,
T.
,
Hane
,
Y.
, and
Gong
,
J. P.
,
2021
, “
Revisiting the Origins of the Fracture Energy of Tough Double-Network Hydrogels With Quantitative Mechanochemical Characterization of the Damage Zone
,”
Macromolecules
,
54
(
22
), pp.
10331
10339
.
7.
Matsuda
,
T.
,
Kawakami
,
R.
,
Nakajima
,
T.
, and
Gong
,
J. P.
,
2020
, “
Crack Tip Field of a Double-Network Gel: Visualization of Covalent Bond Scission Through Mechanoradical Polymerization
,”
Macromolecules
,
53
(
20
), pp.
8787
8795
.
8.
Anderson
,
T. L.
,
2017
,
Fracture Mechanics: Fundamentals and Applications
,
CRC Press
,
Boca Raton, FL
.
9.
Gong
,
J. P.
,
Katsuyama
,
Y.
,
Kurokawa
,
T.
, and
Osada
,
Y.
,
2003
, “
Double-Network Hydrogels With Extremely High Mechanical Strength
,”
Adv. Mater.
,
15
(
14
), pp.
1155
1158
.
10.
Ducrot
,
E.
,
Chen
,
Y. L.
,
Bulters
,
M.
,
Sijbesma
,
R. P.
, and
Creton
,
C.
,
2014
, “
Toughening Elastomers With Sacrificial Bonds and Watching Them Break
,”
Science
,
344
(
6180
), pp.
186
189
.
11.
Yang
,
H.
,
Ji
,
M.
,
Yang
,
M.
,
Shi
,
M.
,
Pan
,
Y.
,
Zhou
,
Y.
,
Qi
,
H. J.
,
Suo
,
Z.
, and
Tang
,
J.
,
2021
, “
Fabricating Hydrogels to Mimic Biological Tissues of Complex Shapes and High Fatigue Resistance
,”
Matter
,
4
(
1
), pp.
1
12
.
12.
Wang
,
C.
,
Chen
,
X.
,
Wang
,
L.
,
Makihata
,
M.
,
Liu
,
H. C.
,
Zhou
,
T.
, and
Zhao
,
X.
,
2022
, “
Bioadhesive Ultrasound for Long-Term Continuous Imaging of Diverse Organs
,”
Science
,
377
(
6605
), pp.
517
523
.
13.
Banerjee
,
H.
, and
Ren
,
H.
,
2017
, “
Optimizing Double-Network Hydrogel for Biomedical Soft Robots
,”
Soft Robot
,
4
(
3
), pp.
191
201
.
14.
Ko
,
S.
,
Chhetry
,
A.
,
Kim
,
D.
,
Yoon
,
H.
, and
Park
,
J. Y.
,
2022
, “
Hysteresis-Free Double-Network Hydrogel-Based Strain Sensor for Wearable Smart Bioelectronics
,”
ACS Appl. Mater. Interfaces
,
14
(
27
), pp.
31363
31372
.
15.
Yang
,
J.
,
Li
,
K.
,
Tang
,
C.
,
Liu
,
Z.
,
Fan
,
J.
,
Qin
,
G.
,
Cui
,
W.
,
Zhu
,
L.
, and
Chen
,
Q.
,
2022
, “
Recent Progress in Double Network Elastomers: One Plus One Is Greater Than Two
,”
Adv. Funct. Mater.
,
32
(
19
), p.
2110244
.
16.
Zhao
,
X.
,
Chen
,
X.
,
Yuk
,
H.
,
Lin
,
S.
,
Liu
,
X.
, and
Parada
,
G.
,
2021
, “
Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties
,”
Chem. Rev.
,
121
(
8
), pp.
4309
4372
.
17.
Zhao
,
X.
,
2012
, “
A Theory for Large Deformation and Damage of Interpenetrating Polymer Networks
,”
J. Mech. Phys. Solids
,
60
(
2
), pp.
319
332
.
18.
Wang
,
X.
, and
Hong
,
W.
,
2011
, “
Pseudo-elasticity of a Double Network Gel
,”
Soft Matter
,
7
(
18
), p.
8576
.
19.
Bacca
,
M.
,
Creton
,
C.
, and
McMeeking
,
R. M.
,
2017
, “
A Model for the Mullins Effect in Multinetwork Elastomers
,”
ASME J. Appl. Mech.
,
84
(
12
), p.
121009
.
20.
Okumura
,
K.
,
2004
, “
Toughness of Double Elastic Networks
,”
Europhys. Lett.
,
67
(
3
), pp.
470
476
.
21.
Mao
,
Y.
,
Talamini
,
B.
, and
Anand
,
L.
,
2017
, “
Rupture of Polymers by Chain Scission
,”
Extreme Mech. Lett.
,
13
, pp.
17
24
.
22.
Smith
,
S. B.
,
Cui
,
Y.
, and
Bustamante
,
C.
,
1996
, “
Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules
,”
Science
,
271
(
5250
), pp.
795
799
.
23.
Guo
,
Q.
, and
Zaïri
,
F.
,
2021
, “
A Micromechanics-Based Model for Deformation-Induced Damage and Failure in Elastomeric Media
,”
Int. J. Plast.
,
140
, p.
102976
.
24.
Xiao
,
R.
,
Han
,
N.
,
Zhong
,
D.
, and
Qu
,
S.
,
2021
, “
Modeling the Mechanical Behaviors of Multiple Network Elastomers
,”
Mech. Mater.
,
161
, p.
103992
.
25.
Lu
,
T.
,
Wang
,
Z.
,
Tang
,
J.
,
Zhang
,
W.
, and
Wang
,
T.
,
2020
, “
A Pseudo-Elasticity Theory to Model the Strain-Softening Behavior of Tough Hydrogels
,”
J. Mech. Phys. Solids
,
137
, p.
103832
.
26.
Lavoie
,
S. R.
,
Millereau
,
P.
,
Creton
,
C.
,
Long
,
R.
, and
Tang
,
T.
,
2019
, “
A Continuum Model for Progressive Damage in Tough Multinetwork Elastomers
,”
J. Mech. Phys. Solids
,
125
, pp.
523
549
.
27.
Morovati
,
V.
,
Bahrololoumi
,
A.
, and
Dargazany
,
R.
,
2021
, “
Fatigue-Induced Stress-Softening in Cross-Linked Multi-Network Elastomers: Effect of Damage Accumulation
,”
Int. J. Plast.
,
142
, p.
102993
.
28.
Xiao
,
R.
,
Mai
,
T.-T.
,
Urayama
,
K.
,
Gong
,
J. P.
, and
Qu
,
S.
,
2020
, “
Micromechanical Modeling of the Multi-axial Deformation Behavior in Double Network Hydrogels
,”
Int. J. Plast.
,
137
, p.
102901
.
29.
Lu
,
H.
,
Li
,
Z.
,
Wang
,
X.
,
Xing
,
Z.
, and
Fu
,
Y. Q.
,
2021
, “
Negatively Thermodynamic Toughening in Double Network Hydrogel Towards Cooling-Triggered Multi-shape Memory Effect
,”
Smart Mater. Struct.
,
30
(
10
), p.
105011
.
30.
Brown
,
H. R.
,
2007
, “
A Model of the Fracture of Double Network Gels
,”
Macromolecules
,
40
(
10
), pp.
3815
3818
.
31.
Tanaka
,
Y.
,
2007
, “
A Local Damage Model for Anomalous High Toughness of Double-Network Gels
,”
Europhys. Lett.
,
78
(
5
), p.
56005
.
32.
Morovati
,
V.
,
Saadat
,
M. A.
, and
Dargazany
,
R.
,
2020
, “
Necking of Double-Network Gels: Constitutive Modeling With Microstructural Insight
,”
Phys. Rev. E
,
102
(
6
), p.
062501
.
33.
Lin
,
S.
, and
Zhao
,
X.
,
2020
, “
Fracture of Polymer Networks With Diverse Topological Defects
,”
Phys. Rev. E
,
102
(
5
), p.
052503
.
34.
Arora
,
A.
,
Lin
,
T.-S.
,
Beech
,
H. K.
,
Mochigase
,
H.
,
Wang
,
R.
, and
Olsen
,
B. D.
,
2020
, “
Fracture of Polymer Networks Containing Topological Defects
,”
Macromolecules
,
53
(
17
), pp.
7346
7355
.
35.
Zhao
,
Z.
,
Lei
,
H.
,
Chen
,
H.-S.
,
Zhang
,
Q.
,
Wang
,
P.
, and
Lei
,
M.
,
2021
, “
A Multiscale Tensile Failure Model for Double Network Elastomer Composites
,”
Mech. Mater.
,
163
, p.
104074
.
36.
Sanoja
,
G. E.
,
Morelle
,
X. P.
,
Comtet
,
J.
,
Yeh
,
C. J.
,
Ciccotti
,
M.
, and
Creton
,
C.
,
2021
, “
Why Is Mechanical Fatigue Different From Toughness in Elastomers? The Role of Damage by Polymer Chain Scission
,”
Sci. Adv.
,
7
(
42
), p.
eabg9410
.
37.
Francfort
,
G. A.
, and
Marigo
,
J. J.
,
1998
, “
Revisiting Brittle Fracture as an Energy Minimization Problem
,”
J. Mech. Phys. Solids
,
46
(
8
), pp.
1319
1342
.
38.
Miehe
,
C.
,
Hofacker
,
M.
, and
Welschinger
,
F.
,
2010
, “
A Phase Field Model for Rate-Independent Crack Propagation: Robust Algorithmic Implementation Based on Operator Splits
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
45–48
), pp.
2765
2778
.
39.
Bourdin
,
B.
,
Francfort
,
G. A.
, and
Marigo
,
J.-J.
,
2008
, “
The Variational Approach to Fracture
,”
J. Elast.
,
91
(
1–3
), pp.
5
148
.
40.
Bui
,
T. Q.
, and
Hu
,
X.
,
2021
, “
A Review of Phase-Field Models, Fundamentals and Their Applications to Composite Laminates
,”
Eng. Fract. Mech.
,
248
, p.
107705
.
41.
McAuliffe
,
C.
, and
Waisman
,
H.
,
2015
, “
A Unified Model for Metal Failure Capturing Shear Banding and Fracture
,”
Int. J. Plast.
,
65
, pp.
131
151
.
42.
Miehe
,
C.
, and
Schänzel
,
L.-M.
,
2014
, “
Phase Field Modeling of Fracture in Rubbery Polymers. Part I: Finite Elasticity Coupled With Brittle Failure
,”
J. Mech. Phys. Solids
,
65
, pp.
93
113
.
43.
Loew
,
P. J.
,
Peters
,
B.
, and
Beex
,
L. A. A.
,
2019
, “
Rate-Dependent Phase-Field Damage Modeling of Rubber and Its Experimental Parameter Identification
,”
J. Mech. Phys. Solids
,
127
, pp.
266
294
.
44.
Gultekin
,
O.
,
Dal
,
H.
, and
Holzapfel
,
G. A.
,
2018
, “
Numerical Aspects of Anisotropic Failure in Soft Biological Tissues Favor Energy-Based Criteria: A Rate-Dependent Anisotropic Crack Phase-Field Model
,”
Comput. Methods Appl. Mech. Eng.
,
331
, pp.
23
52
.
45.
Russ
,
J.
,
Slesarenko
,
V.
,
Rudykh
,
S.
, and
Waisman
,
H.
,
2020
, “
Rupture of 3D-Printed Hyperelastic Composites: Experiments and Phase Field Fracture Modeling
,”
J. Mech. Phys. Solids
,
140
, p.
103941
.
46.
Wu
,
J.
,
McAuliffe
,
C.
,
Waisman
,
H.
, and
Deodatis
,
G.
,
2016
, “
Stochastic Analysis of Polymer Composites Rupture at Large Deformations Modeled by a Phase Field Method
,”
Comput. Methods Appl. Mech. Eng.
,
312
, pp.
596
634
.
47.
Loew
,
P. J.
,
Poh
,
L. H.
,
Peters
,
B.
, and
Beex
,
L. A. A.
,
2020
, “
Accelerating Fatigue Simulations of a Phase-Field Damage Model for Rubber
,”
Comput. Methods Appl. Mech. Eng.
,
370
, p.
113247
.
48.
Li
,
B.
, and
Bouklas
,
N.
,
2020
, “
A Variational Phase-Field Model for Brittle Fracture in Polydisperse Elastomer Networks
,”
Int. J. Solids Struct.
,
182–183
, pp.
193
204
.
49.
Talamini
,
B.
,
Mao
,
Y.
, and
Anand
,
L.
,
2018
, “
Progressive Damage and Rupture in Polymers
,”
J. Mech. Phys. Solids
,
111
, pp.
434
457
.
50.
Mao
,
Y.
, and
Anand
,
L.
,
2018
, “
A Theory for Fracture of Polymeric Gels
,”
J. Mech. Phys. Solids
,
115
, pp.
30
53
.
51.
Slootman
,
J.
,
Yeh
,
C. J.
,
Millereau
,
P.
,
Comtet
,
J.
, and
Creton
,
C.
,
2022
, “
A Molecular Interpretation of the Toughness of Multiple Network Elastomers at High Temperature
,”
Proc. Natl. Acad. Sci. U.S.A.
,
119
(
13
), p.
e2116127119
.
52.
Davidson
,
J. D.
, and
Goulbourne
,
N. C.
,
2013
, “
A Nonaffine Network Model for Elastomers Undergoing Finite Deformations
,”
J. Mech. Phys. Solids
,
61
(
8
), pp.
1784
1797
.
53.
Rubinstein
,
M.
, and
Panyukov
,
S.
,
2002
, “
Elasticity of Polymer Networks
,”
Macromolecules
,
35
(
17
), pp.
6670
6686
.
54.
Holzapfel
,
G. A.
,
2002
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science
,
John Wiley & Sons
,
Chichester
.
55.
Chester
,
S. A.
,
Di Leo
,
C. V.
, and
Anand
,
L.
,
2015
, “
A Finite Element Implementation of a Coupled Diffusion-Deformation Theory for Elastomeric Gels
,”
Int. J. Solids Struct.
,
52
, pp.
1
18
.
56.
Baha
,
I.
, and
Erman
,
B.
,
1987
, “
Osmotic Compressibility and Mechanical Moduli of Swollen Polymeric Networks
,”
Macromolecules
,
20
(
7
), pp.
1696
1701
.
57.
Lavoie
,
S. R.
,
Long
,
R.
, and
Tang
,
T.
,
2020
, “
Modeling the Mechanics of Polymer Chains With Deformable and Active Bonds
,”
J. Phys. Chem. B
,
124
(
1
), pp.
253
265
.
58.
Zhao
,
Z.
,
Wu
,
D.
,
Lei
,
M.
,
Zhang
,
Q.
,
Wang
,
P.
, and
Lei
,
H.
,
2021
, “
Mechanical Behaviors and the Equivalent Network Model of Self-Similar Multinetwork Elastomers
,”
Int. J. Solids Struct.
,
229
, p.
111135
.
59.
Wang
,
Q.
, and
Gao
,
Z.
,
2016
, “
A Constitutive Model of Nanocomposite Hydrogels With Nanoparticle Crosslinkers
,”
J. Mech. Phys. Solids
,
94
, pp.
127
147
.
60.
Yang
,
T.
,
Liechti
,
K. M.
, and
Huang
,
R.
,
2020
, “
A Multiscale Cohesive Zone Model for Rate-Dependent Fracture of Interfaces
,”
J. Mech. Phys. Solids
,
145
, p.
104142
.
61.
Dal
,
H.
, and
Kaliske
,
M.
,
2009
, “
A Micro-Continuum-Mechanical Material Model for Failure of Rubber-Like Materials: Application to Ageing-Induced Fracturing
,”
J. Mech. Phys. Solids
,
57
(
8
), pp.
1340
1356
.
62.
Griffith
,
A. A.
,
1921
, “
The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. A
,
221
(
582–593
), pp.
163
198
.
63.
Marigo
,
J.-J.
,
Maurini
,
C.
, and
Pham
,
K.
,
2016
, “
An Overview of the Modelling of Fracture by Gradient Damage Models
,”
Meccanica
,
51
(
12
), pp.
3107
3128
.
64.
Miehe
,
C.
,
Schänzel
,
L.-M.
, and
Ulmer
,
H.
,
2015
, “
Phase Field Modeling of Fracture in Multi-physics Problems. Part I. Balance of Crack Surface and Failure Criteria for Brittle Crack Propagation in Thermo-Elastic Solids
,”
Comput. Methods Appl. Mech. Eng.
,
294
, pp.
449
485
.
65.
Marsavina
,
L.
,
Linul
,
E.
,
Voiconi
,
T.
, and
Sadowski
,
T.
,
2013
, “
A Comparison Between Dynamic and Static Fracture Toughness of Polyurethane Foams
,”
Polym. Test.
,
32
(
4
), pp.
673
680
.
66.
de Borst
,
R.
, and
Verhoosel
,
C. V.
,
2016
, “
Gradient Damage Vs Phase-Field Approaches for Fracture: Similarities and Differences
,”
Comput. Methods Appl. Mech. Eng.
,
312
, pp.
78
94
.
67.
Pham
,
K.
,
Amor
,
H.
,
Marigo
,
J.-J.
, and
Maurini
,
C.
,
2011
, “
Gradient Damage Models and Their Use to Approximate Brittle Fracture
,”
Int. J. Damage Mech.
,
20
(
4
), pp.
618
652
.
68.
Alnæs
,
M. S.
,
Logg
,
A.
,
Ølgaard
,
K. B.
,
Rognes
,
M. E.
, and
Wells
,
G. N.
,
2014
, “
Unified Form Language: A Domain-Specific Language for Weak Formulations of Partial Differential Equations
,”
ACM Trans. Math. Softw.
,
40
(
2
), pp.
1
37
.
69.
Ayachit
,
U.
,
2015
,
The ParaView Guide: A Parallel Visualization Application
,
Kitware
,
Clifton Park, NY
.
70.
Chen
,
Y.
,
Yeh
,
C. J.
,
Qi
,
Y.
,
Long
,
R.
, and
Creton
,
C.
,
2020
, “
From Force-Responsive Molecules to Quantifying and Mapping Stresses in Soft Materials
,”
Sci. Adv.
,
6
(
20
), p.
eaaz5093
.
71.
Millereau
,
P.
,
Ducrot
,
E.
,
Clough
,
J. M.
,
Wiseman
,
M. E.
,
Brown
,
H. R.
,
Sijbesma
,
R. P.
, and
Creton
,
C.
,
2018
, “
Mechanics of Elastomeric Molecular Composites
,”
Proc. Natl. Acad. Sci. U.S.A.
,
115
(
37
), pp.
9110
9115
.
72.
Chen
,
Y.
,
Sanoja
,
G.
, and
Creton
,
C.
,
2021
, “
Mechanochemistry Unveils Stress Transfer During Sacrificial Bond Fracture of Tough Multiple Network Elastomers
,”
Chem. Sci.
,
12
(
33
), pp.
11098
11108
.
You do not currently have access to this content.