Abstract

A novel approach to enhance the shock vibration environment of multi-directions using a high-static-low-dynamic stiffness supported orthogonal six-degrees-of-freedom (DOFs) nonlinear vibration isolation (OSNVI) system is presented in this paper. By combining spring positive stiffness and magnetic negative stiffness, the proposed system achieves high-static-low-dynamic stiffness. Under the multi-directions half-sine vibration, the dynamic equation of the OSNVI is obtained. Both dynamic and static analysis methods are utilized to explore the effect of various parameters on the shock isolation performance of the OSNVI from both the time and frequency domains. The results indicate that the proposed OSNVI can efficiently suppress multi-direction shocks at the cost of only one second. Although a nonlinear jump is usually not expected, the nonlinear jump of the OSNVI could improve the load capacity by increasing the spring stiffness without changing the shock isolation frequency band. Finally, a shock experiment is employed through a three-axis shaker platform to validate the shock isolation performance of the orthogonal six-DOF nonlinear vibration isolator. The proposed OSNVI provides a promising approach to suppress the multi-directional shock vibrations.

References

1.
Serief
,
C.
,
2017
, “
Estimate of the Effect of Micro-Vibration on the Performance of the Algerian Satellite (Alsat-1B) Imager
,”
Opt. Laser Technol.
,
96
, pp.
147
152
.
2.
Churchill
,
C. B.
,
Shahan
,
D. W.
,
Smith
,
S. P.
,
Keefe
,
A. C.
, and
McKnight
,
G. P.
,
2016
, “
Dynamically Variable Negative Stiffness Structures
,”
Sci. Adv.
,
2
(
2
), p.
e1500778
.
3.
Rakaric
,
Z.
,
Kovacic
,
I.
, and
Cartmell
,
M.
,
2017
, “
On the Design of External Excitations in Order to Make Nonlinear Oscillators Respond as Free Oscillators of the Same or Different Type
,”
Int. J. Non-Linear Mech.
,
94
, pp.
323
333
.
4.
Ibrahim
,
R. A.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
3–5
), pp.
371
452
.
5.
Yang
,
T.
,
Cao
,
Q.
, and
Hao
,
Z.
,
2021
, “
A Novel Nonlinear Mechanical Oscillator and Its Application in Vibration Isolation and Energy Harvesting
,”
Mech. Syst. Signal Process.
,
155
, p.
107636
.
6.
Ding
,
H.
,
Lu
,
Z.
, and
Chen
,
L.
,
2019
, “
Nonlinear Isolation of Transverse Vibration of Pre-Pressure Beams
,”
J. Sound Vib.
,
442
, pp.
738
751
.
7.
Picavea
,
J.
,
Gameros
,
A.
,
Yang
,
J.
, and
Axinte
,
D.
,
2022
, “
Vibration Suppression Using Tuneable Flexures Acting as Vibration Absorbers
,”
Int. J. Mech. Sci.
,
222
, p.
107238
.
8.
Lacarbonara
,
W.
,
Arena
,
A.
, and
Antman
,
S. S.
,
2015
, “
Flexural Vibrations of Nonlinearly Elastic Circular Rings
,”
Meccanica
,
50
(
3
), pp.
689
705
.
9.
Li
,
Z.
,
Jiang
,
X.
,
Yin
,
P.
,
Tang
,
L.
,
Wu
,
H.
,
Peng
,
Y.
,
Luo
,
J.
,
Xie
,
S.
,
Pu
,
H.
, and
Wang
,
D.
,
2021
, “
Towards Self-Powered Technique in Underwater Robots via a High-Efficiency Electromagnetic Transducer With Circularly Abrupt Magnetic Flux Density Change
,”
Appl. Energy
,
302
, p.
117569
.
10.
Yan
,
B.
,
Yu
,
N.
,
Ma
,
H.
, and
Wu
,
C.
,
2022
, “
A Theory for Bistable Vibration Isolators
,”
Mech. Syst. Signal Process.
,
167
, p.
108507
.
11.
Yao
,
H.
,
Wang
,
Y.
,
Xie
,
L.
, and
Wen
,
B.
,
2020
, “
Bi-Stable Buckled Beam Nonlinear Energy Sink Applied to Rotor System
,”
Mech. Syst. Signal Process.
,
138
, p.
106546
.
12.
Lu
,
Z.
,
Yang
,
T.
,
Brennan
,
M. J.
,
Liu
,
Z.
, and
Chen
,
L.
,
2017
, “
Experimental Investigation of a Two-Stage Nonlinear Vibration Isolation System With High-Static-Low-Dynamic Stiffness
,”
ASME J. Appl. Mech.
,
84
(
2
), p.
021001
.
13.
Sun
,
M.
,
Song
,
G.
,
Li
,
Y.
, and
Huang
,
Z.
,
2019
, “
Effect of Negative Stiffness Mechanism in a Vibration Isolator With Asymmetric and High-Static-Low-Dynamic Stiffness
,”
Mech. Syst. Signal Process.
,
124
, pp.
388
407
.
14.
Han
,
H.
,
Sorokin
,
V.
,
Tang
,
L.
, and
Cao
,
D.
,
2021
, “
A Nonlinear Vibration Isolator With Quasi-Zero-Stiffness Inspired by Miura-Origami Tube
,”
Nonlinear Dyn.
,
105
(
2
), pp.
1313
1325
.
15.
Ye
,
K.
, and
Ji
,
J. C.
,
2022
, “
An Origami Inspired Quasi-Zero Stiffness Vibration Isolator Using a Novel Truss-Spring Based Stack Miura-Ori Structure
,”
Mech. Syst. Signal Process.
,
165
, p.
108383
.
16.
Wu
,
W.
, and
Tang
,
B.
,
2021
, “
Analysis of a Bio-Inspired Multistage Nonlinear Vibration Isolator: An Elliptic Harmonic Balance Approach
,”
Arch. Appl. Mech.
,
92
(
1
), pp.
183
198
.
17.
Yan
,
G.
,
Zou
,
H.
,
Wang
,
S.
,
Zhao
,
L.
,
Wu
,
Z.
, and
Zhang
,
W.
,
2021
, “
Bio-Inspired Vibration Isolation: Methodology and Design
,”
ASME Appl. Mech. Rev.
,
73
(
2
), p.
020801
.
18.
Zhou
,
J.
,
Zhao
,
X.
,
Wang
,
K.
,
Chang
,
Y.
,
Xu
,
D.
, and
Wen
,
G.
,
2021
, “
Bio-Inspired Bistable Piezoelectric Vibration Energy Harvester: Design and Experimental Investigation
,”
Energy
,
228
, p.
120595
.
19.
Zhang
,
W.
, and
Zhao
,
J. B.
,
2016
, “
Analysis on Nonlinear Stiffness and Vibration Isolation Performance of Scissor-Like Structure With Full Types
,”
Nonlinear Dyn.
,
86
(
1
), pp.
17
36
.
20.
Chai
,
Y.
,
Jing
,
X.
, and
Guo
,
Y.
,
2022
, “
A Compact X-Shaped Mechanism Based 3-DOF Anti-Vibration Unit With Enhanced Tunable QZS Property
,”
Mech. Syst. Signal Process.
,
168
, p.
108651
.
21.
Chai
,
Y.
,
Jing
,
X.
, and
Chao
,
X.
,
2022
, “
X-Shaped Mechanism Based Enhanced Tunable QZS Property for Passive Vibration Isolation
,”
Int. J. Mech. Sci.
,
218
, p.
107077
.
22.
Bian
,
J.
, and
Jing
,
X.
,
2020
, “
Analysis and Design of a Novel and Compact X-Structured Vibration Isolation Mount (X-Mount) With Wider Quasi-Zero-Stiffness Range
,”
Nonlinear Dyn.
,
101
(
4
), pp.
2195
2222
.
23.
Gatti
,
G.
,
2021
, “
Effect of Parameters on the Design of a Suspension System With Four Oblique Springs
,”
Shock Vib.
,
2021
, pp.
1
16
.
24.
Gatti
,
G.
,
2022
, “
An Adjustable Device to Adaptively Realise Diverse Nonlinear Force-Displacement Characteristics
,”
Mech. Syst. Signal Process.
,
180
, p.
109379
.
25.
Hu
,
F.
, and
Jing
,
X.
,
2017
, “
A 6-DOF Passive Vibration Isolator Based on Stewart Structure With X-Shaped Legs
,”
Nonlinear Dyn.
,
91
(
1
), pp.
157
185
.
26.
Wu
,
Y.
,
Yu
,
K.
,
Jiao
,
J.
,
Cao
,
D.
,
Chi
,
W.
, and
Tang
,
J.
,
2018
, “
Dynamic Isotropy Design and Analysis of a Six-DOF Active Micro-Vibration Isolation Manipulator on Satellites
,”
Rob. Comput.-Integr. Manuf.
,
49
, pp.
408
425
.
27.
Yang
,
X.
,
Wu
,
H.
,
Chen
,
B.
,
Kang
,
S.
, and
Cheng
,
S.
,
2019
, “
Dynamic Modeling and Decoupled Control of a Flexible Stewart Platform for Vibration Isolation
,”
J. Sound Vib.
,
439
, pp.
398
412
.
28.
Zheng
,
Y.
,
Li
,
Q.
,
Yan
,
B.
,
Luo
,
Y.
, and
Zhang
,
X.
,
2018
, “
A Stewart Isolator With High-Static-Low-Dynamic Stiffness Struts Based on Negative Stiffness Magnetic Springs
,”
J. Sound Vib.
,
422
, pp.
390
408
.
29.
Carrella
,
A.
,
2008
, “
Passive Vibration Isolators With High-Static-Low-Dynamic-Stiffness
,”
Ph.D. thesis
,
University of Southampton
,
Southampton
.
30.
Jiang
,
Y.
,
Song
,
C.
,
Ding
,
C.
, and
Xu
,
B.
,
2020
, “
Design of Magnetic-Air Hybrid Quasi-Zero Stiffness Vibration Isolation System
,”
J. Sound Vib.
,
477
, p.
115346
.
31.
Zhou
,
N.
, and
Liu
,
K.
,
2010
, “
A Tunable High-Static–Low-Dynamic Stiffness Vibration Isolator
,”
J. Sound Vib.
,
329
(
9
), pp.
1254
1273
.
32.
Sun
,
Y.
,
Zhao
,
J.
,
Wang
,
M.
,
Sun
,
Y.
,
Pu
,
H.
,
Luo
,
J.
,
Peng
,
Y.
,
Xie
,
S.
, and
Yang
,
Y.
,
2020
, “
High-Static–Low-Dynamic Stiffness Isolator With Tunable Electromagnetic Mechanism
,”
IEEE/ASME Trans. Mechatron.
,
25
(
1
), pp.
316
326
.
33.
Yan
,
B.
,
Ma
,
H.
,
Zhao
,
C.
,
Wu
,
C.
,
Wang
,
K.
, and
Wang
,
P.
,
2018
, “
A Vari-Stiffness Nonlinear Isolator With Magnetic Effects: Theoretical Modeling and Experimental Verification
,”
Int. J. Mech. Sci.
,
148
, pp.
745
755
.
34.
Yan
,
L.
,
Xuan
,
S.
, and
Gong
,
X.
,
2018
, “
Shock Isolation Performance of a Geometric Anti-Spring Isolator
,”
J. Sound Vib.
,
413
, pp.
120
143
.
35.
Gatti
,
G.
,
Ledezma-Ramirez
,
D. F.
, and
Brennan
,
M. J.
,
2023
, “
Performance of a Shock Isolator Inspired by Skeletal Muscles
,”
Int. J. Mech. Sci.
,
244
, p.
108066
.
36.
Yu
,
B.
,
Liu
,
H.
,
Fan
,
D.
, and
Xie
,
X.
,
2022
, “
Design of Quasi-Zero Stiffness Compliant Shock Isolator Under Strong Shock Excitation
,”
Precis. Eng.
,
78
, pp.
47
59
.
37.
Ledezma-Ramírez
,
D. F.
,
Tapia-González
,
P. E.
,
Brennan
,
M. J.
, and
Paupitz Gonçalves
,
P. J.
,
2022
, “
An Experimental Investigation Into the Shock Response of a Compact Wire Rope Isolator in Its Axial Direction
,”
Eng. Struct.
,
262
, p.
114317
.
38.
Ma
,
H.
,
Yan
,
B.
,
Zhang
,
L.
,
Zheng
,
W.
, and
Wu
,
C.
,
2020
, “
On the Design of Nonlinear Damping With Electromagnetic Shunt Damping
,”
Int. J. Mech. Sci.
,
175
, p.
105513
.
39.
Guo
,
S.
,
Gao
,
R.
,
Tian
,
X.
, and
Liu
,
S.
,
2023
, “
A Quasi-Zero-Stiffness Elastic Metamaterial for Energy Absorption and Shock Attenuation
,”
Eng. Struct.
,
280
, p.
115687
.
40.
Ledezma-Ramírez
,
D. F.
,
Tapia-González
,
P. E.
,
Ferguson
,
N.
,
Brennan
,
M.
, and
Tang
,
B.
,
2019
, “
Recent Advances in Shock Vibration Isolation: An Overview and Future Possibilities
,”
ASME Appl. Mech. Rev.
,
71
(
6
), p.
060802
.
41.
Tang
,
B.
, and
Brennan
,
M. J.
,
2014
, “
On the Shock Performance of a Nonlinear Vibration Isolator With High-Static-Low-Dynamic-Stiffness
,”
Int. J. Mech. Sci.
,
81
, pp.
207
214
.
42.
Waters
,
T. P.
,
Hyun
,
Y.
, and
Brennan
,
M. J.
,
2009
, “
The Effect of Dual-Rate Suspension Damping on Vehicle Response to Transient Road Inputs
,”
ASME J. Vib. Acoust.
,
131
(
1
), p.
011004
.
43.
Wen
,
J.
,
Yao
,
H.
,
Wu
,
B.
,
Ji
,
Z.
,
Wen
,
L.
,
Xu
,
M.
,
Jin
,
Y.
, and
Yan
,
X.
,
2021
, “
Dynamic Analysis and Structure Optimization on Trapezoidal Wave Generator for Eliminating the Over Deviation of the Residual Wave in Shock Test Measurement
,”
Measurement
,
182
, p.
109665
.
44.
Zheng
,
R.
,
Ren
,
S.
,
Chen
,
G.
, and
Chen
,
H.
,
2021
, “
Multi-Shaker Half Sine Shock on Random Mixed Vibration Control
,”
J. Sound Vib.
,
512
, p.
116372
.
45.
Ravaud
,
R.
,
Lemarquand
,
G.
, and
Lemarquand
,
V.
,
2009
, “
Force and Stiffness of Passive Magnetic Bearings Using Permanent Magnets. Part 1: Axial Magnetization
,”
IEEE Trans. Magn.
,
45
(
7
), pp.
2996
3002
.
46.
Wang
,
D.
,
Zhang
,
Q.
, and
Hu
,
G.
,
2023
, “
Low Frequency Waterborne Sound Insulation Based on Sandwich Panels With Quasi-Zero-Stiffness Truss Core
,”
ASME J. Appl. Mech.
,
90
(
3
), p.
031006
.
47.
Hao
,
R.
,
Lu
,
Z.
,
Ding
,
H.
, and
Chen
,
L.
,
2022
, “
Orthogonal Six-DOFs Vibration Isolation With Tunable High-Static-Low-Dynamic Stiffness: Experiment and Analysis
,”
Int. J. Mech. Sci.
,
222
, p.
107237
.
You do not currently have access to this content.