Abstract

In this study, the interaction of a parabolic notch with a generalized antiplane singularity is studied, and its analytical solution is derived. The singularity may be either an antiplane concentrated force or a screw dislocation, and separate solutions for each of these are found. The driving force present on the screw dislocation due to the notch free boundary is obtained. It is found that a dislocation-free zone may exist beneath the notch root surface when the screw dislocation is placed on the notch geometric symmetry axis, as the driving force will pull dislocations to the free boundary where they will be annihilated. The solutions developed in this study may be used as building blocks to model the damage of material near a parabolic notch under antiplane load conditions and therefore serve as a step in quantifying crack nucleation conditions, which is the novelty of the current study.

References

1.
Williams
,
M. L.
,
1952
, “
Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension
,”
ASME J. Appl. Mech.
,
19
(
4
), pp.
526
528
.
2.
Neuber
,
H.
,
1958
,
Theory of Notch Stresses: Principles for Exact Calculation of Strength With Reference to Structural Form and Material
,
Springer-Verlag
,
Berlin
.
3.
Creager
,
M.
, and
Paris
,
P. C.
,
1967
, “
Elastic Field Equations for Blunt Cracks With Reference to Stress Corrosion Cracking
,”
Int. J. Fract. Mech.
,
3
(
4
), pp.
247
252
.
4.
Savruk
,
M. P.
, and
Kazberuk
,
A.
,
2006
, “
A Relationship Between the Stress Intensity and Stress Concentration Factors for Sharp and Rounded Notches
,”
Mater. Sci.
,
42
(
6
), pp.
725
738
.
5.
Kim
,
J. K.
, and
Cho
,
S. B.
,
2012
, “
A Superposition Approach to the Stress Fields for Various Blunt V-Notches
,”
Fatigue Fract. Eng. Mater. Struct.
,
36
(
4
), pp.
139
153
.
6.
Radaj
,
D.
,
2014
, “
State-of-the-Art Review on Extended Stress Intensity Factor Concepts
,”
Fatigue Fract. Eng. Mater. Struct.
,
37
(
1
), pp.
1
28
.
7.
Bahrami
,
B.
,
Ayatollahi
,
M. R.
, and
Mirzaei
,
A. M.
,
2019
, “
Analysis of Stresses and Displacements in the Vicinity of Blunt V-Notches by Considering Higher Order Terms
,”
Fatigue Fract. Eng. Mater. Struct.
,
42
(
8
), pp.
1760
1774
.
8.
Kullmer
,
G.
, and
Richard
,
H. A.
,
2006
, “
Influence of the Root Radius of Crack-Like Notches on the Fracture Load of Brittle Components
,”
Arch. Appl. Mech.
,
76
(
11–12
), pp.
711
723
.
9.
Gómez
,
F. J.
,
Elices
,
M.
,
Berto
,
F.
, and
Lazzarin
,
P.
,
2007
, “
Local Strain Energy to Assess the Static Failure of U-Notches in Plates Under Mixed Mode Loading
,”
Int. J. Fract.
,
145
(
1
), pp.
29
45
.
10.
Livieri
,
P.
, and
Segala
,
F.
,
2007
, “
Analytical Evaluation of J-Integral for Elliptical and Parabolic Notches Under Mode I and Mode II Loading
,”
Int. J. Fract.
,
148
(
1
), pp.
57
71
.
11.
Zappalorto
,
M.
, and
Lazzarin
,
P.
,
2014
, “
Some Remarks on the Neuber Rule Applied to a Control Volume Surrounding Sharp and Blunt Notch Tips
,”
Fatigue Fract. Eng. Mater. Struct.
,
37
(
4
), pp.
349
358
.
12.
Wang
,
X.
, and
Schiavone
,
P.
,
2021
, “
Elastic Field for a Blunt Crack Represented by a Parabolic Cavity in a Generally Anisotropic Elastic Material
,”
Eng. Fract. Mech.
,
251
, p.
107763
.
13.
Muskhelishvili
,
N. I.
,
1953
,
Some Basic Problems of the Mathematical Theory of Elasticity
,
Noordhoff
,
Groningen
.
14.
Carpenter
,
W. C.
,
1984
, “
Calculation of the Fracture Mechanics Parameters for a General Corner
,”
Int. J. Fract.
,
24
(
1
), pp.
45
58
.
15.
Carpenter
,
W. C.
,
1984
, “
Mode I and Mode II Stress Intensities for Plates With Cracks of Finite Opening
,”
Int. J. Fract.
,
26
(
3
), pp.
201
204
.
16.
Carpenter
,
W. C.
,
1994
, “
Comments on the Eigenvalue Formulation of Problems With Cracks, V-Notched Cracks, and Corners
,”
Int. J. Fract.
,
68
(
1
), pp.
75
87
.
17.
Carpenter
,
W. C.
,
1995
, “
Insensitivity of the Reciprocal Work Contour Integral Method to Higher Order Eigenvectors
,”
Int. J. Fract.
,
73
(
2
), pp.
93
108
.
18.
Lazzarin
,
P.
, and
Tovo
,
R.
,
1996
, “
A Unified Approach to the Evaluation of Linear Elastic Stress Fields in the Neighborhood of Cracks and Notches
,”
Int. J. Fract.
,
78
(
1
), pp.
3
19
.
19.
Filippi
,
S.
,
Lazzarin
,
P.
, and
Tovo
,
R.
,
2002
, “
Developments of Some Explicit Formulas Useful to Describe Elastic Stress Fields Ahead of Notches in Plates
,”
Int. J. Solids Struct.
,
39
(
17
), pp.
4543
4565
.
20.
Lazzarin
,
P.
,
Zappalorto
,
M.
, and
Berto
,
F.
,
2011
, “
Generalised Stress Intensity Factors for Rounded Notches in Plates Under In-Plane Shear Loading
,”
Int. J. Fract.
,
170
(
2
), pp.
123
144
.
21.
Mirzaei
,
A. M.
,
Ayatollahi
,
M. R.
,
Bahrami
,
B.
, and
Berto
,
F.
,
2020
, “
Elastic Stress Analysis of Blunt V-Notches Under Mixed Mode Loading by Considering Higher Order Terms
,”
Appl. Math. Modell.
,
78
, pp.
665
684
.
22.
Filon
,
L. N. G.
,
1900
, “
On the Resistance to Torsion of Certain Forms of Shafting With Special Reference to the Effect of Keyways
,”
Philos. Trans. R. Soc. A
,
193
, pp.
309
352
.
23.
Shepherd
,
W. M.
,
1932
, “
The Torsion and Flexure of Shafting With Keyways or Cracks
,”
Proc. R. Soc. London Ser. A
Math. Phys. Character,
138
(
836
), pp.
607
634
.
24.
Wigglesworth
,
L. A.
,
1939
, “
Flexure and Torsion of an Internally Cracked Shaft
,”
Proc. R. Soc. London Ser. A Math. Phys. Sci.
,
170
(
942
), pp.
365
391
.
25.
Wigglesworth
,
L. A.
, and
Stevenson
,
A. C.
,
1939
, “
Flexure and Torsion of Cylinders With Cross-Sections Bounded by Orthogonal Circular Arcs
,”
Proc. R. Soc. Lond. A
,
184
(
942
), pp.
391
414
.
26.
Rushton
,
K. R.
,
1967
, “
Stress Concentrations Arising in the Torsion of Grooved Shafts
,”
Int. J. Mech. Sci.
,
9
(
10
), pp.
697
705
.
27.
Ohr
,
S. M.
,
Chang
,
S. J.
, and
Thomson
,
R.
,
1985
, “
Elastic Interaction of a Wedge Crack With a Screw Dislocation
,”
J. Appl. Phys.
,
57
(
6
), pp.
1839
1843
.
28.
Noda
,
N.
, and
Takase
,
Y.
,
2003
, “
Generalized Stress Intensity Factors for V-Shaped Notch in a Round Bar Under Torsion, Tension and Bending
,”
Eng. Fract. Mech.
,
70
(
11
), pp.
1447
1466
.
29.
Noda
,
N.
, and
Takase
,
Y.
,
2006
, “
Stress Concentration Formula Useful for all Notch Shape in a Round Bar (Comparison Between Torsion, Tension and Bending)
,”
Int. J. Fatigue
,
28
(
2
), pp.
151
163
.
30.
Savruk
,
M. P.
,
Kazberuk
,
A.
, and
Tarasyuk
,
G.
,
2012
, “
Distribution of Stresses Over the Contour of Rounded V-Shaped Notch Under Antiplane Deformation
,”
Mater. Sci.
,
47
(
6
), pp.
717
725
.
31.
Kim
,
J.-K.
, and
Cho
,
S.-B.
,
2013
, “
Superposition Approach of the Stress Fields for Blunt V-Notches Under Anti-Plane Shear Loading
,”
Int. J. Precis. Eng. Manuf.
,
14
(
4
), pp.
605
612
.
32.
Savruk
,
M. P.
, and
Kazberuk
,
A.
,
2017
,
Stress Concentration at Notches
,
Springer
,
New York
.
33.
Smith
,
E.
,
2004
, “
The Elastic Stress Distribution Near the Root of an Elliptically Cylindrical Notch Subjected to Mode III Loadings
,”
Int. J. Eng. Sci.
,
42
(
17–18
), pp.
1831
1839
.
34.
Lazzarin
,
P.
,
Zappalorto
,
M.
, and
Yates
,
J. R.
,
2007
, “
Analytical Study of Stress Distributions Due to Semi-Elliptic Notches in Shafts Under Torsion Loading
,”
Int. J. Eng. Sci.
,
45
(
2–8
), pp.
308
328
.
35.
Zappalorto
,
M.
,
Lazzarin
,
P.
, and
Yates
,
J. R.
,
2008
, “
Elastic Stress Distributions for Hyperbolic and Parabolic Notches in Round Shafts Under Torsion and Uniform Antiplane Shear Loadings
,”
Int. J. Solids Struct.
,
45
(
18–19
), pp.
4879
4901
.
36.
Zappalorto
,
M.
, and
Lazzarin
,
P.
,
2009
, “
A New Version of the Neuber Rule Accounting for the Influence of the Notch Opening Angle for Out-of-Plane Shear Loads
,”
Int. J. Solids Struct.
,
46
(
9
), pp.
1901
1910
.
37.
Salviato
,
M.
, and
Zappalorto
,
M.
,
2016
, “
A Unified Solution Approach for a Large Variety of Antiplane Shear and Torsion Notch Problems: Theory and Examples
,”
Int. J. Solids Struct.
,
102–103
, pp.
10
20
.
38.
Ma
,
L. F.
, and
Hills
,
D. A.
,
2022
, “
Interaction of a Parabolic Notch With a Generalized Singularity
,”
Int. J. Eng. Sci.
,
176
, p.
103685
.
39.
Ma
,
L. F.
,
2022
, “
Fundamental Formulation for Anti-Plane Eigenstrain Problems
,”
Mech. Mater.
,
165
, p.
104188
.
40.
Rose
,
L. R. F.
,
1987
, “
The Mechanics of Transformation Toughening
,”
Proc. R. Soc. London A Math. Phys. Sci.
,
412
(
1842
), pp.
169
197
.
41.
Ma
,
L. F.
,
2010
, “
Fundamental Formulation for Transformation Toughening
,”
Int. J. Solids Struct.
,
47
(
22–23
), pp.
3214
3220
.
42.
Wang
,
X.
, and
Schiavone
,
P.
,
2021
, “
A Screw Dislocation Located Outside, Inside or on the Interface of a Parabolic Elastic Inhomogeneity
,”
Arch. Mech.
,
73
, pp.
219
235
.
43.
Eshelby
,
J. D.
,
1951
, “
The Force on an Elastic Singularity
,”
Philos. Trans. R. Soc. London Ser. A Math. Phys. Sci.
,
244
(
877
), pp.
87
112
.
44.
Cherepanov
,
G. P.
,
1967
, “
The Propagation of Cracks in a Continuous Medium
,”
J. Appl. Math. Mech.
,
31
(
3
), pp.
503
512
.
45.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
.
46.
Budiansky
,
B.
, and
Rice
,
J. R.
,
1973
, “
Conservation Laws and Energy-Release Rates
,”
ASME J. Appl. Mech.
,
40
(
1
), pp.
201
203
.
47.
Hills
,
D. A.
,
Kelly
,
P. A.
,
Dai
,
D. N.
, and
Korsunsky
,
A. M.
,
1996
,
Solution of Crack Problems: The Distributed Dislocation Technique
,
Kluwer Academic Publishers
,
Dordrecht, the Netherlands
.
You do not currently have access to this content.